8259 PIC

From OSDev.wiki
Revision as of 21:52, 23 March 2010 by osdev>Nedbrek (Added section on disabling)
Jump to navigation Jump to search

The 8259 Programmable Interrupt Controller (PIC) is one of the most important chips making up the x86 architecture. Without it, the x86 architecture would not be an interrupt driven architecture. The function of the 8259A is to manage hardware interrupts and send them to the appropriate system interrupt. This allows the system to respond to devices needs without loss of time (from polling the device, for instance).

It is important to note that APIC has replaced the 8259 PIC in more modern systems, especially those with multiple cores/processors.

What does the 8259 PIC do?

The 8259 PIC controls the CPU's interrupt mechanism, by accepting several interrupt requests and feeding them to the processor in order. For instance, when a keyboard registers a keyhit, it sends a pulse along it's interrupt line (IRQ 1) to the PIC chip, which then translates the IRQ into a system interrupt, and sends a message to interrupt the CPU from whatever it is doing. Part of the kernel's job is to either handle these IRQs and perform the necessary procedures (poll the keyboard for the scancode) or alert a userspace program to the interrupt (send a message to the keyboard driver).

Without a PIC, you would have to poll all the devices in the system to see if they want to do anything (signal an event), but with a PIC, your system can run along nicely until such time that a device wants to signal an event, which means you don't waste time going to the devices, you let the devices come to you when they are ready.

The IBM PC 8259 PIC Architecture

In the beginning (IBM PC and XT), only a single 8259 PIC chip was used, which provided 8 IRQs to the system. These were traditionally mapped by the BIOS to interrupts 8 to 15 (0x08 to 0x0F). It is unlikely that any of these single-PIC machines will be encountered these days.

The IBM PC/AT 8259 PIC Architecture

The IBM PC/AT extended the PC architecture by adding a second 8259 PIC chip. This was possible due to the 8259A's ability to cascade interrupts, that is, have them flow through one chip and into another. This gives a total of 15 interrupts. Why 15 and not 16? That's because when you cascade chips, the PIC needs to use one of the interrupt lines to signal the other chip.

Thus, in an AT, IRQ line 2 is used to signal the second chip... But to confuse things more, IRQ 9 is redirected to IRQ 2. So when you get an IRQ 9, the signal is redirected to IRQ 2. This two-chip architecture is still used and available in modern systems, and hasn't changed (except for the advent of the above-mentioned APIC architecture).

How does the 8259 PIC chip work?

Each of the two 8259 PICs in modern systems have 8 inputs. When any of the inputs is raised, the PIC sets a bit internally telling one of the inputs needs servicing. It then checks whether that channel is masked or not, and whether there's an interrupt already pending. If the channel is unmasked and there's no interrupt pending, the PIC will raise the interrupt line. On the slave, this feeds IRQ 2 to the master, and the master is connected to the processor interrupt line.

When the processor accepts the interrupt, the master checks which of the two PICs is responsible for answering, then either supplies the interrupt number to the processor, or asks the slave to do so. The PIC that answers looks up the "vector offset" variable stored internally and adds the input line to form the requested interrupt number. After that the processor will look up the interrupt address and act accordingly (see Interrupts for more details).

Programming with the 8259 PIC

Each chip (master and slave) has a command port and a data port (given in the table below). When no command is issued, the data port allows us to access the interrupt mask of the 8259 PIC.

Chip - Purpose I/O Port
Master PIC - Command 0x0020
Master PIC - Data 0x0021
Slave PIC - Command 0x00A0
Slave PIC - Data 0x00A1
  • Each PIC vector offset must be divisible by 8, as the 8259A uses the lower 3 bits for the interrupt number of a particular interrupt (0..7).
  • The only way to change the vector offsets used by the 8259 PIC is to re-initialize it, which explains why the code is "so long" and plenty of things that have apparently no reasons to be here.
  • If you plan to return to real mode from protected mode (for any purpose), you really must restore the PIC to its former configuration.

Real Mode

Chip Interrupt numbers (IRQ) Vector offset Interrupt Numbers
Master PIC 0 to 7 0x08 0x08 to 0x0F
Slave PIC 8 to 15 0x70 0x70 to 0x77

These default BIOS values suit real mode programming quite well; they do not conflict with any CPU exceptions like they do in protected mode.

Protected Mode

In protected mode, the IRQs 0 to 7 conflict with the CPU exception which are reserved by Intel up until 0x1F. (It was an IBM design mistake.) Consequently it is difficult to tell the difference between an IRQ or an software error. It is thus recommended to change the PIC's offsets (also known as remapping the PIC) so that IRQs use non-reserved vectors. A common choice is to move them to the beginning of the available range (IRQs 0..0xF -> INT 0x20..0x2F). For that, we need to set the master PIC's offset to 0x20 and the slave's to 0x28. For code examples, see below.

Code Examples

Common Definitions

This is just a set of definitions common to the rest of this section. For the outb(), inb() and io_wait() functions, see this page.

#define PIC1		0x20		/* IO base address for master PIC */
#define PIC2		0xA0		/* IO base address for slave PIC */
#define PIC1_COMMAND	PIC1
#define PIC1_DATA	(PIC1+1)
#define PIC2_COMMAND	PIC2
#define PIC2_DATA	(PIC2+1)

End of Interrupt

Perhaps the most common command issued to the PIC chips is the end of interrupt (EOI) command (code 0x20). This is issued to the PIC chips at the end of an IRQ-based interrupt routine. If the IRQ came from the Master PIC, it is sufficient to issue this command only to the Master PIC; however if the IRQ came from the Slave PIC, it is necessary to issue the command to both PIC chips.

#define PIC_EOI		0x20		/* End-of-interrupt command code */

void PIC_sendEOI(unsigned char irq)
{
	if(irq >= 8)
		outb(PIC2_COMMAND,PIC_EOI);
	
	outb(PIC1_COMMAND,PIC_EOI);
}

Initialisation

When you enter protected mode (or even before hand, if you're not using GRUB) the first command you will need to give the two PICs is the initialise command (code 0x11). This command makes the PIC wait for 3 extra "initialisation words" on the data port. These bytes give the PIC:

  • Its vector offset. (ICW2)
  • Tell it how it is wired to master/slaves. (ICW3)
  • Gives additional information about the environment. (ICW4)
/* reinitialize the PIC controllers, giving them specified vector offsets
   rather than 8 and 70, as configured by default */

#define ICW1_ICW4	0x01		/* ICW4 (not) needed */
#define ICW1_SINGLE	0x02		/* Single (cascade) mode */
#define ICW1_INTERVAL4	0x04		/* Call address interval 4 (8) */
#define ICW1_LEVEL	0x08		/* Level triggered (edge) mode */
#define ICW1_INIT	0x10		/* Initialization - required! */

#define ICW4_8086	0x01		/* 8086/88 (MCS-80/85) mode */
#define ICW4_AUTO	0x02		/* Auto (normal) EOI */
#define ICW4_BUF_SLAVE	0x08		/* Buffered mode/slave */
#define ICW4_BUF_MASTER	0x0C		/* Buffered mode/master */
#define ICW4_SFNM	0x10		/* Special fully nested (not) */

/*
arguments:
	offset1 - vector offset for master PIC
		vectors on the master become offset1..offset1+7
	offset2 - same for slave PIC: offset2..offset2+7
*/
void PIC_remap(int offset1, int offset2)
{
	unsigned char a1, a2;
	
	a1 = inb(PIC1_DATA);                        // save masks
	a2 = inb(PIC2_DATA);
	
	outb(PIC1_COMMAND, ICW1_INIT+ICW1_ICW4);  // starts the initialization sequence
	io_wait();
	outb(PIC2_COMMAND, ICW1_INIT+ICW1_ICW4);
	io_wait();
	outb(PIC1_DATA, offset1);                 // define the PIC vectors
	io_wait();
	outb(PIC2_DATA, offset2);
	io_wait();
	outb(PIC1_DATA, 4);                       // continue initialization sequence
	io_wait();
	outb(PIC2_DATA, 2);
	io_wait();
	
	outb(PIC1_DATA, ICW4_8086);
	io_wait();
	outb(PIC2_DATA, ICW4_8086);
	io_wait();
	
	outb(PIC1_DATA, a1);   // restore saved masks.
	outb(PIC2_DATA, a2);
}

Note the presence of io_wait() calls, on older machines its necessary to give the PIC some time to react to commands as they might not be processed quickly

Disabling

If you are going to use the processor local APIC and the IOAPIC, you must first disable the PIC. This is done via:

mov al, 0xff
out 0xa1, al
out 0x21, al

See Also

Articles

Threads

External Links