PCI IDE Controller: Difference between revisions

From OSDev.wiki
Jump to navigation Jump to search
[unchecked revision][unchecked revision]
Content added Content deleted
m (Bot: fixing lint errors, replacing obsolete HTML tags: <font> (2x))
 
(19 intermediate revisions by 8 users not shown)
Line 3: Line 3:


[[ATAPI]] is an extension to ATA (recently renamed to PATA) which adds support for the SCSI command set.
[[ATAPI]] is an extension to ATA (recently renamed to PATA) which adds support for the SCSI command set.

== Parallel/Serial ATA/ATAPI ==
== Parallel/Serial ATA/ATAPI ==
IDE can connect up to 4 drives. Each drive can be one of the following:
IDE can connect up to 4 drives. Each drive can be one of the following:

* ATA (Serial): Used for most modern hard drives.
* ATA (Serial): Used for most modern hard drives.
* ATA (Parallel): Commonly used for hard drives.
* ATA (Parallel): Commonly used for hard drives.
* ATAPI (Serial): Used for most modern optical drives.
* ATAPI (Serial): Used for most modern optical drives.
* ATAPI (Parallel): Commonly used for optical drives.
* ATAPI (Parallel): Commonly used for optical drives.

Accessing an ATA/PATA drive works the same way as accessing a SATA drive. This also implicitly states that accessing a PATAPI ODD is the same as accessing a SATAPI ODD. An IDE driver does not need to know whether a drive is parallel or serial, it only has to know whether it's using ATA or ATAPI.
Accessing an ATA/PATA drive works the same way as accessing a SATA drive. This also implicitly states that accessing a PATAPI ODD is the same as accessing a SATAPI ODD. An IDE driver does not need to know whether a drive is parallel or serial, it only has to know whether it's using ATA or ATAPI.

== IDE Interface ==
== IDE Interface ==
If you open your case up and take a look at your motherboard, you will most likely see one or two (or possibly more) of the slots.

If you open your case up and take a look at your motherboard, you will most likely see one or two (or possibly more) of the slots that can be seen in the picture to the right.


The white and green ports are IDE ports, also known as ''channels''. In this example there are both primary and secondary IDE channels which only PATA can be connected to; this means that it only supports PATA/PATAPI drives.
The white and green ports are IDE ports, also known as ''channels''. In this example there are both primary and secondary IDE channels which only PATA can be connected to; this means that it only supports PATA/PATAPI drives.


Each port can have a PATA cable connected to it (see the image on the right). One master drive, or two drives (master and slave), can be connected to one PATA cable. So that leaves us with the following possibilities:
Each port can have a PATA cable connected to it. One master drive, or two drives (master and slave), can be connected to one PATA cable. So that leaves us with the following possibilities:

* Primary Master Drive.
* Primary Master Drive.
* Primary Slave Drive.
* Primary Slave Drive.
* Secondary Master Drive.
* Secondary Master Drive.
* Secondary Slave Drive.
* Secondary Slave Drive.

Each drive can be either PATA or PATAPI.
Each drive can be either PATA or PATAPI.

== Serial IDE ==
== Serial IDE ==
Almost every modern motherboard has a Serial IDE channel which allows [[SATA]] and SATAPI Drives to be connected to it. There are 4 Serial IDE Ports (you can see these in the photo to the right). Each port is connected to a drive with a SATA Cable. Basically (looking at the pictures), you can only have one drive connected to the Serial IDE port. Each pair of ports (every 2 ports) form one channel.
Almost every modern (this article is probably written in early 2010 so it assumes motherboards still have ide/ahci modes) motherboard has a Serial IDE channel which allows [[SATA]] and SATAPI Drives to be connected to it. There are 4 Serial IDE Ports. Each port is connected to a drive with a SATA Cable. Basically you can only have one drive connected to the Serial IDE port. Each pair of ports (every 2 ports) form one channel.


Serial IDE also has a few possibilities:
Serial IDE also has a few possibilities:

* Primary Master, also called SATA1.
* Primary Master, also called SATA1.
* Primary Slave, also called SATA2.
* Primary Slave, also called SATA2.
* Secondary Master, also called SATA3.
* Secondary Master, also called SATA3.
* Secondary Slave, also called SATA4.
* Secondary Slave, also called SATA4.

== Detecting a PCI IDE Controller ==
== Detecting a PCI IDE Controller ==
Each IDE controller appears as a device on the [[PCI]] bus. If the class code is 0x01 (Mass Storage Controller) and the subclass code is 0x1, (IDE) this device is an IDE Device.
Each IDE controller appears as a device on the [[PCI]] bus and can be identified by reading the configuration space. If the class code is 0x01 (Mass Storage Controller) and the subclass code is 0x01 (IDE), the device is an IDE controller. The programming interface byte(Prog If) determines how you'll access it.
* Bit 0: When set, the primary channel is in PCI native mode. When clear, the primary channel is in compatibility mode (ports 0x1F0-0x1F7, 0x3F6, IRQ14).
The IDE device only uses five BARs out of the six
* Bit 1: When set, you can modify bit 0 to switch between PCI native and compatibility mode. When clear, you cannot modify bit 0.
* BAR0: Base address of primary channel (I/O space), if it is 0x0 or 0x1, the port is 0x1F0.
* Bit 2: When set, the secondary channel is in PCI native mode. When clear, the secondary channel is in compatibility mode (ports 0x170-0x177, 0x376, IRQ15).
* BAR1: Base address of primary channel control port (I/O space), if it is 0x0 or 0x1, the port is 0x3F6.
* Bit 3: When set, you can modify bit 2 to switch between PCI native and compatibility mode. When clear, you cannot modify bit 2.
* BAR2: Base address of secondary channel (I/O space), if it is 0x0 or 0x1, the port is 0x170.
* Bit 7: When set, this is a bus master IDE controller. When clear, this controller doesn't support DMA.
* BAR3: Base address of secondary channel control port, if it is 0x0 or 0x1, the port is 0x376.
If you want to access an IDE channel in PCI native mode or use the bus master function, you must additionally read the BARs to find which I/O ports to use.
* BAR4: Bus Master IDE; refers to the base of I/O range consisting of 16 ports. Each 8 ports controls DMA on the primary and secondary channel respectively.
* BAR0: Base address of primary channel in PCI native mode (8 ports)

* BAR1: Base address of primary channel control port in PCI native mode (4 ports)
A parallel IDE controller will use IRQs 14 and 15; a serial IDE uses only one IRQ. To read this IRQ, we look through the device's PCI configuration space:
* BAR2: Base address of secondary channel in PCI native mode (8 ports)
<source lang="c">
* BAR3: Base address of secondary channel control port in PCI native mode (4 ports)
outl((1 << 31) | (bus << 16) | (device << 11) | (func << 8) | 8, 0xCF8); // Send the parameters.
* BAR4: Bus master IDE (16 ports, 8 for each channel)
if ((inl(0xCFC) >> 16) != 0xFFFF) { // If device exists (class isn't 0xFFFF)
Note that BAR1 and BAR3 specify 4 ports, but only the port at offset 2 is used. Offsets 0, 1, and 3 should not be accessed.
// Check if this device needs an IRQ assignment:
outl((1 << 31) | (bus << 16) | (device << 11) | (func << 8) | 0x3C, 0xCF8); // Read the interrupt line field
outb(0xFE, 0xCFC); // Change the IRQ field to 0xFE
outl((1 << 31) | (bus << 16) | (device << 11) | (func << 8) | 0x3C, 0xCF8); // Read the interrupt line field
if ((inl(0xCFC) & 0xFF) == 0xFE) {
// This device needs an IRQ assignment.
} else {
// The device doesn't use IRQs, check if this is an Parallel IDE:
if (class == 0x01 && subclass == 0x01 && (ProgIF == 0x8A || ProgIF == 0x80)) {
// This is a Parallel IDE Controller which uses IRQs 14 and 15.
}
}
}
</source>


If either IDE channel is in PCI native mode, you must also read the interrupt line or interrupt pin register to determine which interrupt to use. If both channels are in PCI native mode, they'll both share the same interrupt. The interrupt line field is only valid when using the [[8259 PIC|PIC]].
== Detecting IDE Drives ==
== Detecting IDE Drives ==

To initialise the IDE driver, we call ide_initialise:
To initialise the IDE driver, we call ide_initialise:
<source lang="c">
<syntaxhighlight lang="c">
void ide_initialize(unsigned int BAR0, unsigned int BAR1, unsigned int BAR2, unsigned int BAR3,
void ide_initialize(unsigned int BAR0, unsigned int BAR1, unsigned int BAR2, unsigned int BAR3,
unsigned int BAR4) {
unsigned int BAR4) {
</syntaxhighlight>
</source>

If you only want to support the parallel IDE, you can use these parameters:
If you only want to support the parallel IDE, you can use these parameters:
<source lang="c">
<syntaxhighlight lang="c">
ide_initialize(0x1F0, 0x3F6, 0x170, 0x376, 0x000);
ide_initialize(0x1F0, 0x3F6, 0x170, 0x376, 0x000);
</syntaxhighlight>
</source>

We can assume that BAR4 is 0x0 because we are not going to use it yet.
We can assume that BAR4 is 0x0 because we are not going to use it yet.
We will return to ide_initialize, which searches for drives connected to the IDE. Before we go into this function, we should write some support functions and definitions which will help us a lot.
We will return to ide_initialize, which searches for drives connected to the IDE. Before we go into this function, we should write some support functions and definitions which will help us a lot.

=== Status ===
=== Status ===

The Command/Status Port returns a bit mask referring to the status of a channel when read.
The Command/Status Port returns a bit mask referring to the status of a channel when read.
<syntaxhighlight lang="c">

<source lang="c">
#define ATA_SR_BSY 0x80 // Busy
#define ATA_SR_BSY 0x80 // Busy
#define ATA_SR_DRDY 0x40 // Drive ready
#define ATA_SR_DRDY 0x40 // Drive ready
Line 94: Line 66:
#define ATA_SR_DRQ 0x08 // Data request ready
#define ATA_SR_DRQ 0x08 // Data request ready
#define ATA_SR_CORR 0x04 // Corrected data
#define ATA_SR_CORR 0x04 // Corrected data
#define ATA_SR_IDX 0x02 // Inlex
#define ATA_SR_IDX 0x02 // Index
#define ATA_SR_ERR 0x01 // Error
#define ATA_SR_ERR 0x01 // Error
</syntaxhighlight>
</source>

=== Errors ===
=== Errors ===

The Features/Error Port, which returns the most recent error upon read, has these possible bit masks
The Features/Error Port, which returns the most recent error upon read, has these possible bit masks
<syntaxhighlight lang="c">

#define ATA_ER_BBK 0x80 // Bad block
<source lang="c">
#define ATA_ER_BBK 0x80 // Bad sector
#define ATA_ER_UNC 0x40 // Uncorrectable data
#define ATA_ER_UNC 0x40 // Uncorrectable data
#define ATA_ER_MC 0x20 // No media
#define ATA_ER_MC 0x20 // Media changed
#define ATA_ER_IDNF 0x10 // ID mark not found
#define ATA_ER_IDNF 0x10 // ID mark not found
#define ATA_ER_MCR 0x08 // No media
#define ATA_ER_MCR 0x08 // Media change request
#define ATA_ER_ABRT 0x04 // Command aborted
#define ATA_ER_ABRT 0x04 // Command aborted
#define ATA_ER_TK0NF 0x02 // Track 0 not found
#define ATA_ER_TK0NF 0x02 // Track 0 not found
#define ATA_ER_AMNF 0x01 // No address mark
#define ATA_ER_AMNF 0x01 // No address mark
</syntaxhighlight>
</source>

=== Commands ===
=== Commands ===

When you write to the Command/Status port, you are executing one of the commands below.
When you write to the Command/Status port, you are executing one of the commands below.
<syntaxhighlight lang="c">

<source lang="c">
#define ATA_CMD_READ_PIO 0x20
#define ATA_CMD_READ_PIO 0x20
#define ATA_CMD_READ_PIO_EXT 0x24
#define ATA_CMD_READ_PIO_EXT 0x24
Line 131: Line 97:
#define ATA_CMD_IDENTIFY_PACKET 0xA1
#define ATA_CMD_IDENTIFY_PACKET 0xA1
#define ATA_CMD_IDENTIFY 0xEC
#define ATA_CMD_IDENTIFY 0xEC
</syntaxhighlight>
</source>

The commands below are for ATAPI devices, which will be understood soon.
The commands below are for ATAPI devices, which will be understood soon.
<syntaxhighlight lang="c">

<source lang="c">
#define ATAPI_CMD_READ 0xA8
#define ATAPI_CMD_READ 0xA8
#define ATAPI_CMD_EJECT 0x1B
#define ATAPI_CMD_EJECT 0x1B
</syntaxhighlight>
</source>

ATA_CMD_IDENTIFY_PACKET and ATA_CMD_IDENTIFY return a buffer of 512 bytes called the identification space; the following definitions are used to read information from the identification space.
ATA_CMD_IDENTIFY_PACKET and ATA_CMD_IDENTIFY return a buffer of 512 bytes called the identification space; the following definitions are used to read information from the identification space.
<source lang="c">
<syntaxhighlight lang="c">
#define ATA_IDENT_DEVICETYPE 0
#define ATA_IDENT_DEVICETYPE 0
#define ATA_IDENT_CYLINDERS 2
#define ATA_IDENT_CYLINDERS 2
Line 153: Line 116:
#define ATA_IDENT_COMMANDSETS 164
#define ATA_IDENT_COMMANDSETS 164
#define ATA_IDENT_MAX_LBA_EXT 200
#define ATA_IDENT_MAX_LBA_EXT 200
</syntaxhighlight>
</source>

When you select a drive, you should specify the interface type and whether it is the master or slave:
When you select a drive, you should specify the interface type and whether it is the master or slave:
<source lang="c">
<syntaxhighlight lang="c">
#define IDE_ATA 0x00
#define IDE_ATA 0x00
#define IDE_ATAPI 0x01
#define IDE_ATAPI 0x01
Line 162: Line 124:
#define ATA_MASTER 0x00
#define ATA_MASTER 0x00
#define ATA_SLAVE 0x01
#define ATA_SLAVE 0x01
</syntaxhighlight>
</source>

Task File is a range of 8 ports which are offsets from BAR0 (primary channel) and/or BAR2 (secondary channel). To exemplify:
Task File is a range of 8 ports which are offsets from BAR0 (primary channel) and/or BAR2 (secondary channel). To exemplify:
* BAR0 + 0 is first port.
* BAR0 + 0 is first port.
* BAR0 + 1 is second port.
* BAR0 + 1 is second port.
* BAR0 + 2 is the third
* BAR0 + 2 is the third
<source lang="c">
<syntaxhighlight lang="c">
#define ATA_REG_DATA 0x00
#define ATA_REG_DATA 0x00
#define ATA_REG_ERROR 0x01
#define ATA_REG_ERROR 0x01
Line 186: Line 147:
#define ATA_REG_ALTSTATUS 0x0C
#define ATA_REG_ALTSTATUS 0x0C
#define ATA_REG_DEVADDRESS 0x0D
#define ATA_REG_DEVADDRESS 0x0D
</syntaxhighlight>
</source>

The ALTSTATUS/CONTROL port returns the alternate status when read and controls a channel when written to.
The ALTSTATUS/CONTROL port returns the alternate status when read and controls a channel when written to.
* For the primary channel, ALTSTATUS/CONTROL port is BAR1 + 2.
* For the primary channel, ALTSTATUS/CONTROL port is BAR1 + 2.
* For the secondary channel, ALTSTATUS/CONTROL port is BAR3 + 2.
* For the secondary channel, ALTSTATUS/CONTROL port is BAR3 + 2.

We can now say that each channel has 13 registers. For the primary channel, we use these values:
We can now say that each channel has 13 registers. For the primary channel, we use these values:
* Data Register: BAR0 + 0; // Read-Write
* Data Register: BAR0 + 0; // Read-Write
Line 206: Line 165:
* Control Register: BAR1 + 2; // Write Only.
* Control Register: BAR1 + 2; // Write Only.
* DEVADDRESS: BAR1 + 3; // I don't know what is the benefit from this register.
* DEVADDRESS: BAR1 + 3; // I don't know what is the benefit from this register.

The map above is the same with the secondary channel, but it uses BAR2 and BAR3 instead of BAR0 and BAR1.
The map above is the same with the secondary channel, but it uses BAR2 and BAR3 instead of BAR0 and BAR1.
<syntaxhighlight lang="c">

<source lang="c">
// Channels:
// Channels:
#define ATA_PRIMARY 0x00
#define ATA_PRIMARY 0x00
Line 217: Line 174:
#define ATA_READ 0x00
#define ATA_READ 0x00
#define ATA_WRITE 0x01
#define ATA_WRITE 0x01
</syntaxhighlight>
</source>

We have defined everything needed by the driver, now lets move to an important part. We said that
We have defined everything needed by the driver, now lets move to an important part. We said that
* BAR0 is the start of the I/O ports used by the primary channel.
* BAR0 is the start of the I/O ports used by the primary channel.
Line 226: Line 182:
* BAR4 is the start of 8 I/O ports controls the primary channel's Bus Master IDE.
* BAR4 is the start of 8 I/O ports controls the primary channel's Bus Master IDE.
* BAR4 + 8 is the Base of 8 I/O ports controls secondary channel's Bus Master IDE.
* BAR4 + 8 is the Base of 8 I/O ports controls secondary channel's Bus Master IDE.

So we can make this global structure:
So we can make this global structure:
<source lang="c">
<syntaxhighlight lang="c">
struct IDEChannelRegisters {
struct IDEChannelRegisters {
unsigned short base; // I/O Base.
unsigned short base; // I/O Base.
Line 235: Line 190:
unsigned char nIEN; // nIEN (No Interrupt);
unsigned char nIEN; // nIEN (No Interrupt);
} channels[2];
} channels[2];
</syntaxhighlight>
</source>

We also need a buffer to read the identification space into, we need a variable that indicates if an irq is invoked or not, and finally we need an array of 6 words [12 bytes] for ATAPI Drives:
We also need a buffer to read the identification space into, we need a variable that indicates if an irq is invoked or not, and finally we need an array of 6 words [12 bytes] for ATAPI Drives:
<syntaxhighlight lang="c">

<source lang="c">
unsigned char ide_buf[2048] = {0};
unsigned char ide_buf[2048] = {0};
unsigned static char ide_irq_invoked = 0;
volatile unsigned static char ide_irq_invoked = 0;
unsigned static char atapi_packet[12] = {0xA8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned static char atapi_packet[12] = {0xA8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
</syntaxhighlight>
</source>

We said the the IDE can contain up to 4 drives:
We said the the IDE can contain up to 4 drives:
<syntaxhighlight lang="c">

<source lang="c">
struct ide_device {
struct ide_device {
unsigned char Reserved; // 0 (Empty) or 1 (This Drive really exists).
unsigned char Reserved; // 0 (Empty) or 1 (This Drive really exists).
Line 259: Line 210:
unsigned char Model[41]; // Model in string.
unsigned char Model[41]; // Model in string.
} ide_devices[4];
} ide_devices[4];
</syntaxhighlight>
</source>

When we read a register in a channel, like STATUS Register, it is easy to execute:
When we read a register in a channel, like STATUS Register, it is easy to execute:
<syntaxhighlight lang="c">

<source lang="c">
ide_read(channel, ATA_REG_STATUS);
ide_read(channel, ATA_REG_STATUS);


Line 282: Line 231:
return result;
return result;
}
}
</syntaxhighlight>
</source>

We also need a function for writing to registers:
We also need a function for writing to registers:
<source lang="c">
<syntaxhighlight lang="c">
void ide_write(unsigned char channel, unsigned char reg, unsigned char data) {
void ide_write(unsigned char channel, unsigned char reg, unsigned char data) {
if (reg > 0x07 && reg < 0x0C)
if (reg > 0x07 && reg < 0x0C)
Line 300: Line 248:
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
}
}
</syntaxhighlight>
</source>

To read the identification space, we should read the Data Register as a double word 128 times. We can then copy them to our buffer.
To read the identification space, we should read the Data Register as a double word 128 times. We can then copy them to our buffer.
<syntaxhighlight lang="c">

<source lang="c">
void ide_read_buffer(unsigned char channel, unsigned char reg, unsigned int buffer,
void ide_read_buffer(unsigned char channel, unsigned char reg, unsigned int buffer,
unsigned int quads) {
unsigned int quads) {
Line 326: Line 272:
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
}
}
</syntaxhighlight>
</source>

When we send a command, we should wait for 400 nanosecond, then read the Status port. If the Busy bit is on, we should read the status port again until the Busy bit is 0; then we can read the results of the command. This operation is called "Polling". We can also use IRQs instead of polling.
When we send a command, we should wait for 400 nanosecond, then read the Status port. If the Busy bit is on, we should read the status port again until the Busy bit is 0; then we can read the results of the command. This operation is called "Polling". We can also use IRQs instead of polling.


After many commands, if the Device Fault bit is set, there is a failure; if DRQ is not set, there is an error. If the ERR bit is set, there is an error which is described in Error port.
After many commands, if the Device Fault bit is set, there is a failure; if DRQ is not set, there is an error. If the ERR bit is set, there is an error which is described in Error port.
<syntaxhighlight lang="c">

<source lang="c">
unsigned char ide_polling(unsigned char channel, unsigned int advanced_check) {
unsigned char ide_polling(unsigned char channel, unsigned int advanced_check) {


Line 369: Line 313:


}
}
</syntaxhighlight>
</source>

If there is an error, we have a function which prints errors on screen:
If there is an error, we have a function which prints errors on screen:
<source lang="c">
<syntaxhighlight lang="c">
unsigned char ide_print_error(unsigned int drive, unsigned char err) {
unsigned char ide_print_error(unsigned int drive, unsigned char err) {
if (err == 0)
if (err == 0)
Line 398: Line 341:
return err;
return err;
}
}
</syntaxhighlight>
</source>

Now let's return to the initialization function:
Now let's return to the initialization function:
<source lang="c">
<syntaxhighlight lang="c">
void ide_initialize(unsigned int BAR0, unsigned int BAR1, unsigned int BAR2, unsigned int BAR3,
void ide_initialize(unsigned int BAR0, unsigned int BAR1, unsigned int BAR2, unsigned int BAR3,
unsigned int BAR4) {
unsigned int BAR4) {
Line 414: Line 356:
channels[ATA_PRIMARY ].bmide = (BAR4 & 0xFFFFFFFC) + 0; // Bus Master IDE
channels[ATA_PRIMARY ].bmide = (BAR4 & 0xFFFFFFFC) + 0; // Bus Master IDE
channels[ATA_SECONDARY].bmide = (BAR4 & 0xFFFFFFFC) + 8; // Bus Master IDE
channels[ATA_SECONDARY].bmide = (BAR4 & 0xFFFFFFFC) + 8; // Bus Master IDE
</syntaxhighlight>
</source>
Then we should disable IRQs in both channels by setting bit 1 (nIEN) in the Control port:
Then we should disable IRQs in both channels by setting bit 1 (nIEN) in the Control port:
<syntaxhighlight lang="c">

<source lang="c">
// 2- Disable IRQs:
// 2- Disable IRQs:
ide_write(ATA_PRIMARY , ATA_REG_CONTROL, 2);
ide_write(ATA_PRIMARY , ATA_REG_CONTROL, 2);
ide_write(ATA_SECONDARY, ATA_REG_CONTROL, 2);
ide_write(ATA_SECONDARY, ATA_REG_CONTROL, 2);
</syntaxhighlight>
</source>

Now we need to check for drives which could be connected to each channel. We will select the master drive of each channel, and send the ATA_IDENTIFY command (which is supported by ATA Drives). If there's no error, there are values returned in registers which determine the type of Drive; if no drive is present, there will be strange values.
Now we need to check for drives which could be connected to each channel. We will select the master drive of each channel, and send the ATA_IDENTIFY command (which is supported by ATA Drives). If there's no error, there are values returned in registers which determine the type of Drive; if no drive is present, there will be strange values.


Notice that if bit 4 in HDDEVSEL is set to 1, we are selecting the slave drive, if set to 0, we are selecting the master drive.
Notice that if bit 4 in HDDEVSEL is set to 1, we are selecting the slave drive, if set to 0, we are selecting the master drive.
<syntaxhighlight lang="c">

<source lang="c">
// 3- Detect ATA-ATAPI Devices:
// 3- Detect ATA-ATAPI Devices:
for (i = 0; i < 2; i++)
for (i = 0; i < 2; i++)
Line 459: Line 398:
unsigned char ch = ide_read(i, ATA_REG_LBA2);
unsigned char ch = ide_read(i, ATA_REG_LBA2);


if (cl == 0x14 && ch ==0xEB)
if (cl == 0x14 && ch == 0xEB)
type = IDE_ATAPI;
type = IDE_ATAPI;
else if (cl == 0x69 && ch == 0x96)
else if (cl == 0x69 && ch == 0x96)
Line 508: Line 447:
}
}
}
}
</syntaxhighlight>
</source>

== Read/Write From ATA Drive ==
== Read/Write From ATA Drive ==
Now we're moving to a slightly more advanced part, it is to read and write from/to an ATA drive.
Now we're moving to a slightly more advanced part, it is to read and write from/to an ATA drive.
Line 516: Line 454:
* LBA28: Accessing a sector by its 28-bit LBA address. All ATA drives should support this way of addressing, the problem with LBA28 Addressing is that it only allows access 128GB to be accessed, so if the disk is bigger than 128GB, it should support the LBA48 Feature Set.
* LBA28: Accessing a sector by its 28-bit LBA address. All ATA drives should support this way of addressing, the problem with LBA28 Addressing is that it only allows access 128GB to be accessed, so if the disk is bigger than 128GB, it should support the LBA48 Feature Set.
* LBA48: Accessing a sector by its 48-bit LBA address. As we use integers in GCC, our maximum address in this tutorial is 32-bit long, which allows accessing a drive with a size of up to 2TB.
* LBA48: Accessing a sector by its 48-bit LBA address. As we use integers in GCC, our maximum address in this tutorial is 32-bit long, which allows accessing a drive with a size of up to 2TB.

So we can conclude an algorithm to determine which type of Addressing we are going to use:
So we can conclude an algorithm to determine which type of Addressing we are going to use:

<pre>
<pre>
if (No LBA support)
if (No LBA support)
Line 527: Line 463:
Use LBA28.
Use LBA28.
</pre>
</pre>

Reading the buffer may be done by polling or DMA.
Reading the buffer may be done by polling or DMA.
PIO: After sending the command to read or write sectors, we read or write to the Data Port (as words). This is the same way of reading identification space.
PIO: After sending the command to read or write sectors, we read or write to the Data Port (as words). This is the same way of reading identification space.
Line 535: Line 470:


We can conclude also this table:
We can conclude also this table:
<syntaxhighlight lang="c">

<source lang="c">
/* ATA/ATAPI Read/Write Modes:
/* ATA/ATAPI Read/Write Modes:
* ++++++++++++++++++++++++++++++++
* ++++++++++++++++++++++++++++++++
Line 555: Line 489:
* - Polling Status (+) // Suitable for Singletasking
* - Polling Status (+) // Suitable for Singletasking
*/
*/
</syntaxhighlight>
</source>

There is something needed to be expressed here, I have told before that Task-File is like that:
There is something needed to be expressed here, I have told before that Task-File is like that:
* Register 0: [Word] Data Register. (Read-Write).
* Register 0: [Word] Data Register. (Read-Write).
Line 568: Line 501:
* Register 7: [Byte] Command Register. (Write).
* Register 7: [Byte] Command Register. (Write).
* Register 7: [Byte] Status Register. (Read).
* Register 7: [Byte] Status Register. (Read).

So each register between 2 to 5 should be 8-bits long. Really each of them are 16-bits long.
So each register between 2 to 5 should be 8-bits long. Really each of them are 16-bits long.

* Register 2: [Bits 0-7] SECCOUNT0, [Bits 8-15] SECOUNT1
* Register 2: [Bits 0-7] SECCOUNT0, [Bits 8-15] SECOUNT1
* Register 3: [Bits 0-7] LBA0, [Bits 8-15] LBA3
* Register 3: [Bits 0-7] LBA0, [Bits 8-15] LBA3
* Register 4: [Bits 0-7] LBA1, [Bits 8-15] LBA4
* Register 4: [Bits 0-7] LBA1, [Bits 8-15] LBA4
* Register 5: [Bits 0-7] LBA2, [Bits 8-15] LBA5
* Register 5: [Bits 0-7] LBA2, [Bits 8-15] LBA5

The word [(SECCOUNT1 << 8) | SECCOUNT0] expresses the number of sectors which can be read when you access by LBA48.
The word [(SECCOUNT1 << 8) | SECCOUNT0] expresses the number of sectors which can be read when you access by LBA48.
When you access in CHS or LBA28, SECCOUNT0 only expresses number of sectors.
When you access in CHS or LBA28, SECCOUNT0 only expresses number of sectors.

* LBA0 makes up bits 0 : 7 of the LBA address when you read in LBA28 or LBA48; it can also be the sector number of CHS.
* LBA0 makes up bits 0 : 7 of the LBA address when you read in LBA28 or LBA48; it can also be the sector number of CHS.
* LBA1 makes up bits 8 : 15 of the LBA address when you read in LBA28 or LBA48; it can also be the low byte of the cylinder number of CHS.
* LBA1 makes up bits 8 : 15 of the LBA address when you read in LBA28 or LBA48; it can also be the low byte of the cylinder number of CHS.
Line 585: Line 514:
* LBA4 makes up bits 32 : 39 of the LBA48 address.
* LBA4 makes up bits 32 : 39 of the LBA48 address.
* LBA5 makes up bits 40 : 47 of LBA48 address.
* LBA5 makes up bits 40 : 47 of LBA48 address.

Notice that the LBA0, 1 and 2 registers are 24 bits long in total, which is not enough for LBA28; the higher 4-bits can be written to the lower 4-bits of the HDDEVSEL register.
Notice that the LBA0, 1 and 2 registers are 24 bits long in total, which is not enough for LBA28; the higher 4-bits can be written to the lower 4-bits of the HDDEVSEL register.


Also notice that if bit 6 of this register is set, we are going to use LBA, if not, we are going to use CHS. There is a mode which is called extended CHS.
Also notice that if bit 6 of this register is set, we are going to use LBA, if not, we are going to use CHS. There is a mode which is called extended CHS.


Lets go into the code:
Lets go into the code:
<syntaxhighlight lang="c">

<source lang="c">
unsigned char ide_ata_access(unsigned char direction, unsigned char drive, unsigned int lba,
unsigned char ide_ata_access(unsigned char direction, unsigned char drive, unsigned int lba,
unsigned char numsects, unsigned short selector, unsigned int edi) {
unsigned char numsects, unsigned short selector, unsigned int edi) {
</syntaxhighlight>
</source>

This function reads/writes sectors from ATA-Drive. If direction is 0 we are reading, else we are writing.
This function reads/writes sectors from ATA-Drive. If direction is 0 we are reading, else we are writing.
* drive is the drive number which can be from 0 to 3.
* drive is the drive number which can be from 0 to 3.
Line 602: Line 528:
* numsects is the number of sectors to be read, it is a char, as reading more than 256 sector immediately may performance issues. If numsects is 0, the ATA controller will know that we want 256 sectors.
* numsects is the number of sectors to be read, it is a char, as reading more than 256 sector immediately may performance issues. If numsects is 0, the ATA controller will know that we want 256 sectors.
* selector is the segment selector to read from, or write to.
* selector is the segment selector to read from, or write to.
* edi is the offset in that segment.
* edi is the offset in that segment. (the memory address for the data buffer)
<syntaxhighlight lang="c">

<source lang="c">
unsigned char lba_mode /* 0: CHS, 1:LBA28, 2: LBA48 */, dma /* 0: No DMA, 1: DMA */, cmd;
unsigned char lba_mode /* 0: CHS, 1:LBA28, 2: LBA48 */, dma /* 0: No DMA, 1: DMA */, cmd;
unsigned char lba_io[6];
unsigned char lba_io[6];
Line 613: Line 538:
unsigned short cyl, i;
unsigned short cyl, i;
unsigned char head, sect, err;
unsigned char head, sect, err;
</syntaxhighlight>
</source>

We don't need IRQs, so we should disable it to prevent problems from happening. We said before that if bit 1 of the Control Register (which is called nIEN bit), is set, no IRQs will be invoked from any drives on this channel, either master or slave.
We don't need IRQs, so we should disable it to prevent problems from happening. We said before that if bit 1 of the Control Register (which is called nIEN bit), is set, no IRQs will be invoked from any drives on this channel, either master or slave.
<syntaxhighlight lang="c">

<source lang="c">
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN = (ide_irq_invoked = 0x0) + 0x02);
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN = (ide_irq_invoked = 0x0) + 0x02);
</syntaxhighlight>
</source>

Now lets read the parameters:
Now lets read the parameters:
<syntaxhighlight lang="c">

<source lang="c">
// (I) Select one from LBA28, LBA48 or CHS;
// (I) Select one from LBA28, LBA48 or CHS;
if (lba >= 0x10000000) { // Sure Drive should support LBA in this case, or you are
if (lba >= 0x10000000) { // Sure Drive should support LBA in this case, or you are
Line 659: Line 580:
head = (lba + 1 - sect) % (16 * 63) / (63); // Head number is written to HDDEVSEL lower 4-bits.
head = (lba + 1 - sect) % (16 * 63) / (63); // Head number is written to HDDEVSEL lower 4-bits.
}
}
</syntaxhighlight>
</source>

Now we are going to choose the way of reading the buffer [PIO or DMA]:
Now we are going to choose the way of reading the buffer [PIO or DMA]:
<syntaxhighlight lang="c">

<source lang="c">
// (II) See if drive supports DMA or not;
// (II) See if drive supports DMA or not;
dma = 0; // We don't support DMA
dma = 0; // We don't support DMA
</syntaxhighlight>
</source>

Lets poll the Status port while the channel is busy:
Lets poll the Status port while the channel is busy:
<syntaxhighlight lang="c">

<source lang="c">
// (III) Wait if the drive is busy;
// (III) Wait if the drive is busy;
while (ide_read(channel, ATA_REG_STATUS) & ATA_SR_BSY)
while (ide_read(channel, ATA_REG_STATUS) & ATA_SR_BSY){
; // Wait if busy.
} // Wait if busy.
</source>
</syntaxhighlight>

The HDDDEVSEL register now looks like this:
The HDDDEVSEL register now looks like this:

* Bits 0 : 3: Head Number for CHS.
* Bits 0 : 3: Head Number for CHS.
* Bit 4: Slave Bit. (0: Selecting Master Drive, 1: Selecting Slave Drive).
* Bit 4: Slave Bit. (0: Selecting Master Drive, 1: Selecting Slave Drive).
Line 683: Line 599:
* Bit 6: LBA (0: CHS, 1: LBA).
* Bit 6: LBA (0: CHS, 1: LBA).
* Bit 7: Obsolete and isn't used, but should be set.
* Bit 7: Obsolete and isn't used, but should be set.

Lets write all these information to the register, while the obsolete bits are set (0xA0):
Lets write all these information to the register, while the obsolete bits are set (0xA0):
<syntaxhighlight lang="c">

<source lang="c">
// (IV) Select Drive from the controller;
// (IV) Select Drive from the controller;
if (lba_mode == 0)
if (lba_mode == 0)
Line 692: Line 606:
else
else
ide_write(channel, ATA_REG_HDDEVSEL, 0xE0 | (slavebit << 4) | head); // Drive & LBA
ide_write(channel, ATA_REG_HDDEVSEL, 0xE0 | (slavebit << 4) | head); // Drive & LBA
</syntaxhighlight>
</source>

Let's write the parameters to registers:
Let's write the parameters to registers:
<syntaxhighlight lang="c">

<source lang="c">
// (V) Write Parameters;
// (V) Write Parameters;
if (lba_mode == 2) {
if (lba_mode == 2) {
Line 708: Line 620:
ide_write(channel, ATA_REG_LBA1, lba_io[1]);
ide_write(channel, ATA_REG_LBA1, lba_io[1]);
ide_write(channel, ATA_REG_LBA2, lba_io[2]);
ide_write(channel, ATA_REG_LBA2, lba_io[2]);
</syntaxhighlight>
</source>

If you are using LBA48 and want to write to the LBA0 and LBA3 registers, you should write LBA3 to Register 3, then write LBA0 to Register 3. ide_write function makes it quite simple, refer to the function and you will fully understand the code.
If you are using LBA48 and want to write to the LBA0 and LBA3 registers, you should write LBA3 to Register 3, then write LBA0 to Register 3. ide_write function makes it quite simple, refer to the function and you will fully understand the code.


Now, we have a great set of commands described in ATA/ATAPI-8 Specification, we should choose the suitable command to execute:
Now, we have a great set of commands described in ATA/ATAPI-8 Specification, we should choose the suitable command to execute:
<syntaxhighlight lang="c">

<source lang="c">
// (VI) Select the command and send it;
// (VI) Select the command and send it;
// Routine that is followed:
// Routine that is followed:
Line 723: Line 633:
// If (!DMA & LBA28) DO_PIO_LBA;
// If (!DMA & LBA28) DO_PIO_LBA;
// If (!DMA & !LBA#) DO_PIO_CHS;
// If (!DMA & !LBA#) DO_PIO_CHS;
</syntaxhighlight>
</source>

There isn't a command for doing CHS with DMA.
There isn't a command for doing CHS with DMA.
<syntaxhighlight lang="c">

<source lang="c">
if (lba_mode == 0 && dma == 0 && direction == 0) cmd = ATA_CMD_READ_PIO;
if (lba_mode == 0 && dma == 0 && direction == 0) cmd = ATA_CMD_READ_PIO;
if (lba_mode == 1 && dma == 0 && direction == 0) cmd = ATA_CMD_READ_PIO;
if (lba_mode == 1 && dma == 0 && direction == 0) cmd = ATA_CMD_READ_PIO;
Line 741: Line 649:
if (lba_mode == 2 && dma == 1 && direction == 1) cmd = ATA_CMD_WRITE_DMA_EXT;
if (lba_mode == 2 && dma == 1 && direction == 1) cmd = ATA_CMD_WRITE_DMA_EXT;
ide_write(channel, ATA_REG_COMMAND, cmd); // Send the Command.
ide_write(channel, ATA_REG_COMMAND, cmd); // Send the Command.
</syntaxhighlight>
</source>

This ATA_CMD_READ_PIO command is used for reading in LBA28 or CHS, and the IDE controller refers to bit 6 of the HDDEVSEL register to find out the mode of reading (LBA or CHS).
This ATA_CMD_READ_PIO command is used for reading in LBA28 or CHS, and the IDE controller refers to bit 6 of the HDDEVSEL register to find out the mode of reading (LBA or CHS).


Line 748: Line 655:


Notice that after writing, we should execute the CACHE FLUSH command, and we should poll after it, but without checking for errors.
Notice that after writing, we should execute the CACHE FLUSH command, and we should poll after it, but without checking for errors.
<syntaxhighlight lang="c">

<source lang="c">
if (dma)
if (dma)
if (direction == 0);
if (direction == 0);
Line 784: Line 690:
return 0; // Easy, isn't it?
return 0; // Easy, isn't it?
}
}
</syntaxhighlight>
</source>

== Reading from an ATAPI Drive ==
== Reading from an ATAPI Drive ==
Let's move to an easier part - reading from an ATAPI drive. I will not make the function write to an ATAPI drive, because the write Operation is very complex and is outside of the scope of this tutorial.
Let's move to an easier part - reading from an ATAPI drive. I will not make the function that writes to an ATAPI drive, because writing to it is very complex and is outside of the scope of this tutorial.


An ATAPI drive is different from an ATA drive, as it uses the SCSI command set, not the ATA command set. Parameters are sent as packets, so it is called the ATA-Packet Interface [ATAPI].
An ATAPI drive is different from an ATA drive, as it uses the SCSI command set instead of the ATA command set. Parameters are sent as packets, therefore it's called the ATA Packet Interface [ATAPI].


Notice also that ATAPI drives always use IRQs, you can't disable them. We should create a function which waits for an IRQ to be caused:
Notice also that ATAPI drives always use IRQs and you can't disable them. We should create a function that waits for an IRQ:
<syntaxhighlight lang="c">

<source lang="c">
void ide_wait_irq() {
void ide_wait_irq() {
while (!ide_irq_invoked)
while (!ide_irq_invoked)
Line 799: Line 703:
ide_irq_invoked = 0;
ide_irq_invoked = 0;
}
}
</syntaxhighlight>
</source>

When an IRQ happens, the following function should be executed by ISR:
When an IRQ happens, the following function should be executed by ISR:
<syntaxhighlight lang="c">

<source lang="c">
void ide_irq() {
void ide_irq() {
ide_irq_invoked = 1;
ide_irq_invoked = 1;
}
}
</syntaxhighlight>
</source>

ide_wait_irq will go into a while loop, which waits for the variable ide_irq_invoked to be set, then clears it.
ide_wait_irq will go into a while loop, which waits for the variable ide_irq_invoked to be set, then clears it.
<syntaxhighlight lang="c">

<source lang="c">
unsigned char ide_atapi_read(unsigned char drive, unsigned int lba, unsigned char numsects,
unsigned char ide_atapi_read(unsigned char drive, unsigned int lba, unsigned char numsects,
unsigned short selector, unsigned int edi) {
unsigned short selector, unsigned int edi) {
</syntaxhighlight>
</source>

* drive is the drive number, which is from 0 to 3.
* drive is the drive number, which is from 0 to 3.
* lba is the LBA address.
* lba is the LBA address.
Line 821: Line 720:
* selector is the Segment Selector.
* selector is the Segment Selector.
* edi is the offset in the selector.
* edi is the offset in the selector.

Let's read the parameters of the drive:
Let's read the parameters of the drive:
<syntaxhighlight lang="c">

<source lang="c">
unsigned int channel = ide_devices[drive].Channel;
unsigned int channel = ide_devices[drive].Channel;
unsigned int slavebit = ide_devices[drive].Drive;
unsigned int slavebit = ide_devices[drive].Drive;
Line 831: Line 728:
unsigned char err;
unsigned char err;
int i;
int i;
</syntaxhighlight>
</source>

We need IRQs:
We need IRQs:
<syntaxhighlight lang="c">

<source lang="c">
// Enable IRQs:
// Enable IRQs:
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN = ide_irq_invoked = 0x0);
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN = ide_irq_invoked = 0x0);
</syntaxhighlight>
</source>

Let's setup the SCSI Packet, which is 6 words (12 bytes) long:
Let's setup the SCSI Packet, which is 6 words (12 bytes) long:
<syntaxhighlight lang="c">

<source lang="c">
// (I): Setup SCSI Packet:
// (I): Setup SCSI Packet:
// ------------------------------------------------------------------
// ------------------------------------------------------------------
Line 857: Line 750:
atapi_packet[10] = 0x0;
atapi_packet[10] = 0x0;
atapi_packet[11] = 0x0;
atapi_packet[11] = 0x0;
</syntaxhighlight>
</source>

Now we should select the drive:
Now we should select the drive:
<syntaxhighlight lang="c">

<source lang="c">
// (II): Select the drive:
// (II): Select the drive:
// ------------------------------------------------------------------
// ------------------------------------------------------------------
ide_write(channel, ATA_REG_HDDEVSEL, slavebit << 4);
ide_write(channel, ATA_REG_HDDEVSEL, slavebit << 4);
</syntaxhighlight>
</source>

400 nanoseconds delay after this select is a good idea:
400 nanoseconds delay after this select is a good idea:
<syntaxhighlight lang="c">

<source lang="c">
// (III): Delay 400 nanoseconds for select to complete:
// (III): Delay 400 nanoseconds for select to complete:
// ------------------------------------------------------------------
// ------------------------------------------------------------------
for(int i = 0; i < 4; i++)
for(int i = 0; i < 4; i++)
ide_read(channel, ATA_REG_ALTSTATUS); // Reading the Alternate Status port wastes 100ns.
ide_read(channel, ATA_REG_ALTSTATUS); // Reading the Alternate Status port wastes 100ns.
</syntaxhighlight>
</source>
<syntaxhighlight lang="c">

<source lang="c">
// (IV): Inform the Controller that we use PIO mode:
// (IV): Inform the Controller that we use PIO mode:
// ------------------------------------------------------------------
// ------------------------------------------------------------------
ide_write(channel, ATA_REG_FEATURES, 0); // PIO mode.
ide_write(channel, ATA_REG_FEATURES, 0); // PIO mode.
</syntaxhighlight>
</source>

Tell the controller the size of the buffer
Tell the controller the size of the buffer
<syntaxhighlight lang="c">

<source lang="c">
// (V): Tell the Controller the size of buffer:
// (V): Tell the Controller the size of buffer:
// ------------------------------------------------------------------
// ------------------------------------------------------------------
ide_write(channel, ATA_REG_LBA1, (words * 2) & 0xFF); // Lower Byte of Sector Size.
ide_write(channel, ATA_REG_LBA1, (words * 2) & 0xFF); // Lower Byte of Sector Size.
ide_write(channel, ATA_REG_LBA2, (words * 2) >> 8); // Upper Byte of Sector Size.
ide_write(channel, ATA_REG_LBA2, (words * 2) >> 8); // Upper Byte of Sector Size.
</syntaxhighlight>
</source>

Now that we want to send the packet, we should first send the command "Packet":
Now that we want to send the packet, we should first send the command "Packet":
<syntaxhighlight lang="c">

<source lang="c">
// (VI): Send the Packet Command:
// (VI): Send the Packet Command:
// ------------------------------------------------------------------
// ------------------------------------------------------------------
Line 905: Line 789:
// ------------------------------------------------------------------
// ------------------------------------------------------------------
asm("rep outsw" : : "c"(6), "d"(bus), "S"(atapi_packet)); // Send Packet Data
asm("rep outsw" : : "c"(6), "d"(bus), "S"(atapi_packet)); // Send Packet Data
</syntaxhighlight>
</source>

Here we cannot poll. We should wait for an IRQ, then read the sectors. These two operations should be repeated for each sector.
Here we cannot poll. We should wait for an IRQ, then read the sectors. These two operations should be repeated for each sector.
<syntaxhighlight lang="c">

<source lang="c">
// (IX): Receiving Data:
// (IX): Receiving Data:
// ------------------------------------------------------------------
// ------------------------------------------------------------------
Line 922: Line 804:
edi += (words * 2);
edi += (words * 2);
}
}
</syntaxhighlight>
</source>

Now we should wait for an IRQ and poll until the Busy and DRQ bits are clear:
Now we should wait for an IRQ and poll until the Busy and DRQ bits are clear:
<syntaxhighlight lang="c">

<source lang="c">
// (X): Waiting for an IRQ:
// (X): Waiting for an IRQ:
// ------------------------------------------------------------------
// ------------------------------------------------------------------
Line 938: Line 818:
return 0; // Easy, ... Isn't it?
return 0; // Easy, ... Isn't it?
}
}
</syntaxhighlight>
</source>

== Reading from an ATA/ATAPI Drive ==
== Reading from an ATA/ATAPI Drive ==
<source lang="c">
<syntaxhighlight lang="c">
void ide_read_sectors(unsigned char drive, unsigned char numsects, unsigned int lba,
void ide_read_sectors(unsigned char drive, unsigned char numsects, unsigned int lba,
unsigned short es, unsigned int edi) {
unsigned short es, unsigned int edi) {
Line 967: Line 846:
}
}
// package[0] is an entry of an array. It contains the Error Code.
// package[0] is an entry of an array. It contains the Error Code.
</syntaxhighlight>
</source>

== Writing to an ATA drive ==
== Writing to an ATA drive ==
<source lang="c">
<syntaxhighlight lang="c">
void ide_write_sectors(unsigned char drive, unsigned char numsects, unsigned int lba,
void ide_write_sectors(unsigned char drive, unsigned char numsects, unsigned int lba,
unsigned short es, unsigned int edi) {
unsigned short es, unsigned int edi) {
Line 993: Line 871:
}
}
}
}
</syntaxhighlight>
</source>

== Ejecting an ATAPI Drive ==
== Ejecting an ATAPI Drive ==
<source lang="c">
<syntaxhighlight lang="c">
void ide_atapi_eject(unsigned char drive) {
void ide_atapi_eject(unsigned char drive) {
unsigned int channel = ide_devices[drive].Channel;
unsigned int channel = ide_devices[drive].Channel;
Line 1,062: Line 939:
}
}
}
}
</syntaxhighlight>
</source>

When this method is invoked, the optical device on the given channel is ejected.
When this method is invoked, the optical device on the given channel is ejected.

== See Also ==
== See Also ==
=== Wiki Pages ===
=== Wiki Pages ===
* [[MBR_(x86)|Master Boot Record (x86)]]
* [[MBR_(x86)|Master Boot Record (x86)]]
* [[Partition_Table|Partition Table (x86)]]
* [[Partition_Table|Partition Table (x86)]]

=== Threads ===
=== Threads ===
* [http://www.osdev.org/phpBB2/viewtopic.php?t=12268 How to w/r harddisk in pmode? (ASM Code from Dex)]
* [http://www.osdev.org/phpBB2/viewtopic.php?t=12268 How to w/r harddisk in pmode? (ASM Code from Dex)]
* [http://www.osdev.org/phpBB2/viewtopic.php?t=15314 ATA PIO code library (ASM code from XCHG)]
* [http://www.osdev.org/phpBB2/viewtopic.php?t=15314 ATA PIO code library (ASM code from XCHG)]
* [http://forum.osdev.org/viewtopic.php?f=1&p=167798#p167798 IDE Tutorial (C code from ''mostafazizo'')]
* [http://forum.osdev.org/viewtopic.php?f=1&p=167798#p167798 IDE Tutorial (C code from ''mostafazizo'')]

=== External Links ===
=== External Links ===
* [http://www.t13.org T13] -- The group that creates the ATA standard
* [http://www.t13.org T13] -- The group that creates the ATA standard
Line 1,081: Line 954:
* [http://hddguru.com/content/en/documentation/ HDD Guru] -- The actual ATA specs from the first one that was released in 1994 to the 7th one in 2003.
* [http://hddguru.com/content/en/documentation/ HDD Guru] -- The actual ATA specs from the first one that was released in 1994 to the 7th one in 2003.
* [http://www.ranish.com/part/primer.htm Partitioning Primer] -- A .HTM file containing some information about partitioning.
* [http://www.ranish.com/part/primer.htm Partitioning Primer] -- A .HTM file containing some information about partitioning.
* [http://www.bswd.com/pciide.pdf PCI IDE Controller Specification] -- Small specification containing information on "legacy mode" and "native mode" (and switching between them)
* [http://www.bswd.com/pciide.pdf PCI IDE Controller Specification] -- Specification containing information on "compatibility mode" and "PCI native mode" (and switching between them)
* [http://bswd.com/idems100.pdf Programming Interface for Bus Master IDE Controller] -- Bus Master IDE specification

[[Category:ATA]]
[[Category:ATA]]
[[Category:Storage]]
[[de:AT Attachment]]
[[de:AT Attachment]]

Latest revision as of 15:43, 9 June 2024

The factual accuracy of this article is disputed.
Please see the relevant discussion on the talk page.

IDE is a keyword which refers to the electrical specification of the cables which connect ATA drives (like hard drives) to another device. The drives use the ATA (Advanced Technology Attachment) interface. An IDE cable also can terminate at an IDE card connected to PCI.

ATAPI is an extension to ATA (recently renamed to PATA) which adds support for the SCSI command set.

Parallel/Serial ATA/ATAPI

IDE can connect up to 4 drives. Each drive can be one of the following:

  • ATA (Serial): Used for most modern hard drives.
  • ATA (Parallel): Commonly used for hard drives.
  • ATAPI (Serial): Used for most modern optical drives.
  • ATAPI (Parallel): Commonly used for optical drives.

Accessing an ATA/PATA drive works the same way as accessing a SATA drive. This also implicitly states that accessing a PATAPI ODD is the same as accessing a SATAPI ODD. An IDE driver does not need to know whether a drive is parallel or serial, it only has to know whether it's using ATA or ATAPI.

IDE Interface

If you open your case up and take a look at your motherboard, you will most likely see one or two (or possibly more) of the slots.

The white and green ports are IDE ports, also known as channels. In this example there are both primary and secondary IDE channels which only PATA can be connected to; this means that it only supports PATA/PATAPI drives.

Each port can have a PATA cable connected to it. One master drive, or two drives (master and slave), can be connected to one PATA cable. So that leaves us with the following possibilities:

  • Primary Master Drive.
  • Primary Slave Drive.
  • Secondary Master Drive.
  • Secondary Slave Drive.

Each drive can be either PATA or PATAPI.

Serial IDE

Almost every modern (this article is probably written in early 2010 so it assumes motherboards still have ide/ahci modes) motherboard has a Serial IDE channel which allows SATA and SATAPI Drives to be connected to it. There are 4 Serial IDE Ports. Each port is connected to a drive with a SATA Cable. Basically you can only have one drive connected to the Serial IDE port. Each pair of ports (every 2 ports) form one channel.

Serial IDE also has a few possibilities:

  • Primary Master, also called SATA1.
  • Primary Slave, also called SATA2.
  • Secondary Master, also called SATA3.
  • Secondary Slave, also called SATA4.

Detecting a PCI IDE Controller

Each IDE controller appears as a device on the PCI bus and can be identified by reading the configuration space. If the class code is 0x01 (Mass Storage Controller) and the subclass code is 0x01 (IDE), the device is an IDE controller. The programming interface byte(Prog If) determines how you'll access it.

  • Bit 0: When set, the primary channel is in PCI native mode. When clear, the primary channel is in compatibility mode (ports 0x1F0-0x1F7, 0x3F6, IRQ14).
  • Bit 1: When set, you can modify bit 0 to switch between PCI native and compatibility mode. When clear, you cannot modify bit 0.
  • Bit 2: When set, the secondary channel is in PCI native mode. When clear, the secondary channel is in compatibility mode (ports 0x170-0x177, 0x376, IRQ15).
  • Bit 3: When set, you can modify bit 2 to switch between PCI native and compatibility mode. When clear, you cannot modify bit 2.
  • Bit 7: When set, this is a bus master IDE controller. When clear, this controller doesn't support DMA.

If you want to access an IDE channel in PCI native mode or use the bus master function, you must additionally read the BARs to find which I/O ports to use.

  • BAR0: Base address of primary channel in PCI native mode (8 ports)
  • BAR1: Base address of primary channel control port in PCI native mode (4 ports)
  • BAR2: Base address of secondary channel in PCI native mode (8 ports)
  • BAR3: Base address of secondary channel control port in PCI native mode (4 ports)
  • BAR4: Bus master IDE (16 ports, 8 for each channel)

Note that BAR1 and BAR3 specify 4 ports, but only the port at offset 2 is used. Offsets 0, 1, and 3 should not be accessed.

If either IDE channel is in PCI native mode, you must also read the interrupt line or interrupt pin register to determine which interrupt to use. If both channels are in PCI native mode, they'll both share the same interrupt. The interrupt line field is only valid when using the PIC.

Detecting IDE Drives

To initialise the IDE driver, we call ide_initialise:

void ide_initialize(unsigned int BAR0, unsigned int BAR1, unsigned int BAR2, unsigned int BAR3,
unsigned int BAR4) {

If you only want to support the parallel IDE, you can use these parameters:

ide_initialize(0x1F0, 0x3F6, 0x170, 0x376, 0x000);

We can assume that BAR4 is 0x0 because we are not going to use it yet. We will return to ide_initialize, which searches for drives connected to the IDE. Before we go into this function, we should write some support functions and definitions which will help us a lot.

Status

The Command/Status Port returns a bit mask referring to the status of a channel when read.

#define ATA_SR_BSY     0x80    // Busy
#define ATA_SR_DRDY    0x40    // Drive ready
#define ATA_SR_DF      0x20    // Drive write fault
#define ATA_SR_DSC     0x10    // Drive seek complete
#define ATA_SR_DRQ     0x08    // Data request ready
#define ATA_SR_CORR    0x04    // Corrected data
#define ATA_SR_IDX     0x02    // Index
#define ATA_SR_ERR     0x01    // Error

Errors

The Features/Error Port, which returns the most recent error upon read, has these possible bit masks

#define ATA_ER_BBK      0x80    // Bad block
#define ATA_ER_UNC      0x40    // Uncorrectable data
#define ATA_ER_MC       0x20    // Media changed
#define ATA_ER_IDNF     0x10    // ID mark not found
#define ATA_ER_MCR      0x08    // Media change request
#define ATA_ER_ABRT     0x04    // Command aborted
#define ATA_ER_TK0NF    0x02    // Track 0 not found
#define ATA_ER_AMNF     0x01    // No address mark

Commands

When you write to the Command/Status port, you are executing one of the commands below.

#define ATA_CMD_READ_PIO          0x20
#define ATA_CMD_READ_PIO_EXT      0x24
#define ATA_CMD_READ_DMA          0xC8
#define ATA_CMD_READ_DMA_EXT      0x25
#define ATA_CMD_WRITE_PIO         0x30
#define ATA_CMD_WRITE_PIO_EXT     0x34
#define ATA_CMD_WRITE_DMA         0xCA
#define ATA_CMD_WRITE_DMA_EXT     0x35
#define ATA_CMD_CACHE_FLUSH       0xE7
#define ATA_CMD_CACHE_FLUSH_EXT   0xEA
#define ATA_CMD_PACKET            0xA0
#define ATA_CMD_IDENTIFY_PACKET   0xA1
#define ATA_CMD_IDENTIFY          0xEC

The commands below are for ATAPI devices, which will be understood soon.

#define      ATAPI_CMD_READ       0xA8
#define      ATAPI_CMD_EJECT      0x1B

ATA_CMD_IDENTIFY_PACKET and ATA_CMD_IDENTIFY return a buffer of 512 bytes called the identification space; the following definitions are used to read information from the identification space.

#define ATA_IDENT_DEVICETYPE   0
#define ATA_IDENT_CYLINDERS    2
#define ATA_IDENT_HEADS        6
#define ATA_IDENT_SECTORS      12
#define ATA_IDENT_SERIAL       20
#define ATA_IDENT_MODEL        54
#define ATA_IDENT_CAPABILITIES 98
#define ATA_IDENT_FIELDVALID   106
#define ATA_IDENT_MAX_LBA      120
#define ATA_IDENT_COMMANDSETS  164
#define ATA_IDENT_MAX_LBA_EXT  200

When you select a drive, you should specify the interface type and whether it is the master or slave:

#define IDE_ATA        0x00
#define IDE_ATAPI      0x01

#define ATA_MASTER     0x00
#define ATA_SLAVE      0x01

Task File is a range of 8 ports which are offsets from BAR0 (primary channel) and/or BAR2 (secondary channel). To exemplify:

  • BAR0 + 0 is first port.
  • BAR0 + 1 is second port.
  • BAR0 + 2 is the third
#define ATA_REG_DATA       0x00
#define ATA_REG_ERROR      0x01
#define ATA_REG_FEATURES   0x01
#define ATA_REG_SECCOUNT0  0x02
#define ATA_REG_LBA0       0x03
#define ATA_REG_LBA1       0x04
#define ATA_REG_LBA2       0x05
#define ATA_REG_HDDEVSEL   0x06
#define ATA_REG_COMMAND    0x07
#define ATA_REG_STATUS     0x07
#define ATA_REG_SECCOUNT1  0x08
#define ATA_REG_LBA3       0x09
#define ATA_REG_LBA4       0x0A
#define ATA_REG_LBA5       0x0B
#define ATA_REG_CONTROL    0x0C
#define ATA_REG_ALTSTATUS  0x0C
#define ATA_REG_DEVADDRESS 0x0D

The ALTSTATUS/CONTROL port returns the alternate status when read and controls a channel when written to.

  • For the primary channel, ALTSTATUS/CONTROL port is BAR1 + 2.
  • For the secondary channel, ALTSTATUS/CONTROL port is BAR3 + 2.

We can now say that each channel has 13 registers. For the primary channel, we use these values:

  • Data Register: BAR0 + 0; // Read-Write
  • Error Register: BAR0 + 1; // Read Only
  • Features Register: BAR0 + 1; // Write Only
  • SECCOUNT0: BAR0 + 2; // Read-Write
  • LBA0: BAR0 + 3; // Read-Write
  • LBA1: BAR0 + 4; // Read-Write
  • LBA2: BAR0 + 5; // Read-Write
  • HDDEVSEL: BAR0 + 6; // Read-Write, used to select a drive in the channel.
  • Command Register: BAR0 + 7; // Write Only.
  • Status Register: BAR0 + 7; // Read Only.
  • Alternate Status Register: BAR1 + 2; // Read Only.
  • Control Register: BAR1 + 2; // Write Only.
  • DEVADDRESS: BAR1 + 3; // I don't know what is the benefit from this register.

The map above is the same with the secondary channel, but it uses BAR2 and BAR3 instead of BAR0 and BAR1.

// Channels:
#define      ATA_PRIMARY      0x00
#define      ATA_SECONDARY    0x01

// Directions:
#define      ATA_READ      0x00
#define      ATA_WRITE     0x01

We have defined everything needed by the driver, now lets move to an important part. We said that

  • BAR0 is the start of the I/O ports used by the primary channel.
  • BAR1 is the start of the I/O ports which control the primary channel.
  • BAR2 is the start of the I/O ports used by secondary channel.
  • BAR3 is the start of the I/O ports which control secondary channel.
  • BAR4 is the start of 8 I/O ports controls the primary channel's Bus Master IDE.
  • BAR4 + 8 is the Base of 8 I/O ports controls secondary channel's Bus Master IDE.

So we can make this global structure:

struct IDEChannelRegisters {
   unsigned short base;  // I/O Base.
   unsigned short ctrl;  // Control Base
   unsigned short bmide; // Bus Master IDE
   unsigned char  nIEN;  // nIEN (No Interrupt);
} channels[2];

We also need a buffer to read the identification space into, we need a variable that indicates if an irq is invoked or not, and finally we need an array of 6 words [12 bytes] for ATAPI Drives:

unsigned char ide_buf[2048] = {0};
volatile unsigned static char ide_irq_invoked = 0;
unsigned static char atapi_packet[12] = {0xA8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

We said the the IDE can contain up to 4 drives:

struct ide_device {
   unsigned char  Reserved;    // 0 (Empty) or 1 (This Drive really exists).
   unsigned char  Channel;     // 0 (Primary Channel) or 1 (Secondary Channel).
   unsigned char  Drive;       // 0 (Master Drive) or 1 (Slave Drive).
   unsigned short Type;        // 0: ATA, 1:ATAPI.
   unsigned short Signature;   // Drive Signature
   unsigned short Capabilities;// Features.
   unsigned int   CommandSets; // Command Sets Supported.
   unsigned int   Size;        // Size in Sectors.
   unsigned char  Model[41];   // Model in string.
} ide_devices[4];

When we read a register in a channel, like STATUS Register, it is easy to execute:

ide_read(channel, ATA_REG_STATUS);

unsigned char ide_read(unsigned char channel, unsigned char reg) {
   unsigned char result;
   if (reg > 0x07 && reg < 0x0C)
      ide_write(channel, ATA_REG_CONTROL, 0x80 | channels[channel].nIEN);
   if (reg < 0x08)
      result = inb(channels[channel].base + reg - 0x00);
   else if (reg < 0x0C)
      result = inb(channels[channel].base  + reg - 0x06);
   else if (reg < 0x0E)
      result = inb(channels[channel].ctrl  + reg - 0x0A);
   else if (reg < 0x16)
      result = inb(channels[channel].bmide + reg - 0x0E);
   if (reg > 0x07 && reg < 0x0C)
      ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
   return result;
}

We also need a function for writing to registers:

void ide_write(unsigned char channel, unsigned char reg, unsigned char data) {
   if (reg > 0x07 && reg < 0x0C)
      ide_write(channel, ATA_REG_CONTROL, 0x80 | channels[channel].nIEN);
   if (reg < 0x08)
      outb(channels[channel].base  + reg - 0x00, data);
   else if (reg < 0x0C)
      outb(channels[channel].base  + reg - 0x06, data);
   else if (reg < 0x0E)
      outb(channels[channel].ctrl  + reg - 0x0A, data);
   else if (reg < 0x16)
      outb(channels[channel].bmide + reg - 0x0E, data);
   if (reg > 0x07 && reg < 0x0C)
      ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
}

To read the identification space, we should read the Data Register as a double word 128 times. We can then copy them to our buffer.

void ide_read_buffer(unsigned char channel, unsigned char reg, unsigned int buffer,
                     unsigned int quads) {
   /* WARNING: This code contains a serious bug. The inline assembly trashes ES and
    *           ESP for all of the code the compiler generates between the inline
    *           assembly blocks.
    */
   if (reg > 0x07 && reg < 0x0C)
      ide_write(channel, ATA_REG_CONTROL, 0x80 | channels[channel].nIEN);
   asm("pushw %es; movw %ds, %ax; movw %ax, %es");
   if (reg < 0x08)
      insl(channels[channel].base  + reg - 0x00, buffer, quads);
   else if (reg < 0x0C)
      insl(channels[channel].base  + reg - 0x06, buffer, quads);
   else if (reg < 0x0E)
      insl(channels[channel].ctrl  + reg - 0x0A, buffer, quads);
   else if (reg < 0x16)
      insl(channels[channel].bmide + reg - 0x0E, buffer, quads);
   asm("popw %es;");
   if (reg > 0x07 && reg < 0x0C)
      ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
}

When we send a command, we should wait for 400 nanosecond, then read the Status port. If the Busy bit is on, we should read the status port again until the Busy bit is 0; then we can read the results of the command. This operation is called "Polling". We can also use IRQs instead of polling.

After many commands, if the Device Fault bit is set, there is a failure; if DRQ is not set, there is an error. If the ERR bit is set, there is an error which is described in Error port.

unsigned char ide_polling(unsigned char channel, unsigned int advanced_check) {

   // (I) Delay 400 nanosecond for BSY to be set:
   // -------------------------------------------------
   for(int i = 0; i < 4; i++)
      ide_read(channel, ATA_REG_ALTSTATUS); // Reading the Alternate Status port wastes 100ns; loop four times.

   // (II) Wait for BSY to be cleared:
   // -------------------------------------------------
   while (ide_read(channel, ATA_REG_STATUS) & ATA_SR_BSY)
      ; // Wait for BSY to be zero.

   if (advanced_check) {
      unsigned char state = ide_read(channel, ATA_REG_STATUS); // Read Status Register.

      // (III) Check For Errors:
      // -------------------------------------------------
      if (state & ATA_SR_ERR)
         return 2; // Error.

      // (IV) Check If Device fault:
      // -------------------------------------------------
      if (state & ATA_SR_DF)
         return 1; // Device Fault.

      // (V) Check DRQ:
      // -------------------------------------------------
      // BSY = 0; DF = 0; ERR = 0 so we should check for DRQ now.
      if ((state & ATA_SR_DRQ) == 0)
         return 3; // DRQ should be set

   }

   return 0; // No Error.

}

If there is an error, we have a function which prints errors on screen:

unsigned char ide_print_error(unsigned int drive, unsigned char err) {
   if (err == 0)
      return err;

   printk("IDE:");
   if (err == 1) {printk("- Device Fault\n     "); err = 19;}
   else if (err == 2) {
      unsigned char st = ide_read(ide_devices[drive].channel, ATA_REG_ERROR);
      if (st & ATA_ER_AMNF)   {printk("- No Address Mark Found\n     ");   err = 7;}
      if (st & ATA_ER_TK0NF)   {printk("- No Media or Media Error\n     ");   err = 3;}
      if (st & ATA_ER_ABRT)   {printk("- Command Aborted\n     ");      err = 20;}
      if (st & ATA_ER_MCR)   {printk("- No Media or Media Error\n     ");   err = 3;}
      if (st & ATA_ER_IDNF)   {printk("- ID mark not Found\n     ");      err = 21;}
      if (st & ATA_ER_MC)   {printk("- No Media or Media Error\n     ");   err = 3;}
      if (st & ATA_ER_UNC)   {printk("- Uncorrectable Data Error\n     ");   err = 22;}
      if (st & ATA_ER_BBK)   {printk("- Bad Sectors\n     ");       err = 13;}
   } else  if (err == 3)           {printk("- Reads Nothing\n     "); err = 23;}
     else  if (err == 4)  {printk("- Write Protected\n     "); err = 8;}
   printk("- [%s %s] %s\n",
      (const char *[]){"Primary", "Secondary"}[ide_devices[drive].channel], // Use the channel as an index into the array
      (const char *[]){"Master", "Slave"}[ide_devices[drive].drive], // Same as above, using the drive
      ide_devices[drive].model);

   return err;
}

Now let's return to the initialization function:

void ide_initialize(unsigned int BAR0, unsigned int BAR1, unsigned int BAR2, unsigned int BAR3,
unsigned int BAR4) {

   int j, k, count = 0;

   // 1- Detect I/O Ports which interface IDE Controller:
   channels[ATA_PRIMARY  ].base  = (BAR0 & 0xFFFFFFFC) + 0x1F0 * (!BAR0);
   channels[ATA_PRIMARY  ].ctrl  = (BAR1 & 0xFFFFFFFC) + 0x3F6 * (!BAR1);
   channels[ATA_SECONDARY].base  = (BAR2 & 0xFFFFFFFC) + 0x170 * (!BAR2);
   channels[ATA_SECONDARY].ctrl  = (BAR3 & 0xFFFFFFFC) + 0x376 * (!BAR3);
   channels[ATA_PRIMARY  ].bmide = (BAR4 & 0xFFFFFFFC) + 0; // Bus Master IDE
   channels[ATA_SECONDARY].bmide = (BAR4 & 0xFFFFFFFC) + 8; // Bus Master IDE

Then we should disable IRQs in both channels by setting bit 1 (nIEN) in the Control port:

   // 2- Disable IRQs:
   ide_write(ATA_PRIMARY  , ATA_REG_CONTROL, 2);
   ide_write(ATA_SECONDARY, ATA_REG_CONTROL, 2);

Now we need to check for drives which could be connected to each channel. We will select the master drive of each channel, and send the ATA_IDENTIFY command (which is supported by ATA Drives). If there's no error, there are values returned in registers which determine the type of Drive; if no drive is present, there will be strange values.

Notice that if bit 4 in HDDEVSEL is set to 1, we are selecting the slave drive, if set to 0, we are selecting the master drive.

   // 3- Detect ATA-ATAPI Devices:
   for (i = 0; i < 2; i++)
      for (j = 0; j < 2; j++) {

         unsigned char err = 0, type = IDE_ATA, status;
         ide_devices[count].Reserved = 0; // Assuming that no drive here.

         // (I) Select Drive:
         ide_write(i, ATA_REG_HDDEVSEL, 0xA0 | (j << 4)); // Select Drive.
         sleep(1); // Wait 1ms for drive select to work.

         // (II) Send ATA Identify Command:
         ide_write(i, ATA_REG_COMMAND, ATA_CMD_IDENTIFY);
         sleep(1); // This function should be implemented in your OS. which waits for 1 ms.
                   // it is based on System Timer Device Driver.

         // (III) Polling:
         if (ide_read(i, ATA_REG_STATUS) == 0) continue; // If Status = 0, No Device.

         while(1) {
            status = ide_read(i, ATA_REG_STATUS);
            if ((status & ATA_SR_ERR)) {err = 1; break;} // If Err, Device is not ATA.
            if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRQ)) break; // Everything is right.
         }

         // (IV) Probe for ATAPI Devices:

         if (err != 0) {
            unsigned char cl = ide_read(i, ATA_REG_LBA1);
            unsigned char ch = ide_read(i, ATA_REG_LBA2);

            if (cl == 0x14 && ch == 0xEB)
               type = IDE_ATAPI;
            else if (cl == 0x69 && ch == 0x96)
               type = IDE_ATAPI;
            else
               continue; // Unknown Type (may not be a device).

            ide_write(i, ATA_REG_COMMAND, ATA_CMD_IDENTIFY_PACKET);
            sleep(1);
         }

         // (V) Read Identification Space of the Device:
         ide_read_buffer(i, ATA_REG_DATA, (unsigned int) ide_buf, 128);

         // (VI) Read Device Parameters:
         ide_devices[count].Reserved     = 1;
         ide_devices[count].Type         = type;
         ide_devices[count].Channel      = i;
         ide_devices[count].Drive        = j;
         ide_devices[count].Signature    = *((unsigned short *)(ide_buf + ATA_IDENT_DEVICETYPE));
         ide_devices[count].Capabilities = *((unsigned short *)(ide_buf + ATA_IDENT_CAPABILITIES));
         ide_devices[count].CommandSets  = *((unsigned int *)(ide_buf + ATA_IDENT_COMMANDSETS));

         // (VII) Get Size:
         if (ide_devices[count].CommandSets & (1 << 26))
            // Device uses 48-Bit Addressing:
            ide_devices[count].Size   = *((unsigned int *)(ide_buf + ATA_IDENT_MAX_LBA_EXT));
         else
            // Device uses CHS or 28-bit Addressing:
            ide_devices[count].Size   = *((unsigned int *)(ide_buf + ATA_IDENT_MAX_LBA));

         // (VIII) String indicates model of device (like Western Digital HDD and SONY DVD-RW...):
         for(k = 0; k < 40; k += 2) {
            ide_devices[count].Model[k] = ide_buf[ATA_IDENT_MODEL + k + 1];
            ide_devices[count].Model[k + 1] = ide_buf[ATA_IDENT_MODEL + k];}
         ide_devices[count].Model[40] = 0; // Terminate String.

         count++;
      }

   // 4- Print Summary:
   for (i = 0; i < 4; i++)
      if (ide_devices[i].Reserved == 1) {
         printk(" Found %s Drive %dGB - %s\n",
            (const char *[]){"ATA", "ATAPI"}[ide_devices[i].Type],         /* Type */
            ide_devices[i].Size / 1024 / 1024 / 2,               /* Size */
            ide_devices[i].Model);
      }
}

Read/Write From ATA Drive

Now we're moving to a slightly more advanced part, it is to read and write from/to an ATA drive. There is 3 ways of addressing a sector:

  • CHS (Cylinder-Head-Sector): an old way of addressing sectors in ATA drives, all ATA drives should support this way of addressing.
  • LBA28: Accessing a sector by its 28-bit LBA address. All ATA drives should support this way of addressing, the problem with LBA28 Addressing is that it only allows access 128GB to be accessed, so if the disk is bigger than 128GB, it should support the LBA48 Feature Set.
  • LBA48: Accessing a sector by its 48-bit LBA address. As we use integers in GCC, our maximum address in this tutorial is 32-bit long, which allows accessing a drive with a size of up to 2TB.

So we can conclude an algorithm to determine which type of Addressing we are going to use:

if (No LBA support)
   Use CHS.
else if (the LBA Sector Address > 0x0FFFFFFF)
   Use LBA48.
else
   Use LBA28.

Reading the buffer may be done by polling or DMA. PIO: After sending the command to read or write sectors, we read or write to the Data Port (as words). This is the same way of reading identification space. DMA: After sending the command, you should wait for an IRQ, while you are waiting, Buffer is written directly to memory automatically.

We are going to use PIO as it is less complex.

We can conclude also this table:

   /* ATA/ATAPI Read/Write Modes:
    * ++++++++++++++++++++++++++++++++
    *  Addressing Modes:
    *  ================
    *   - LBA28 Mode.     (+)
    *   - LBA48 Mode.     (+)
    *   - CHS.            (+)
    *  Reading Modes:
    *  ================
    *   - PIO Modes (0 : 6)       (+) // Slower than DMA, but not a problem.
    *   - Single Word DMA Modes (0, 1, 2).
    *   - Double Word DMA Modes (0, 1, 2).
    *   - Ultra DMA Modes (0 : 6).
    *  Polling Modes:
    *  ================
    *   - IRQs
    *   - Polling Status   (+) // Suitable for Singletasking   
    */

There is something needed to be expressed here, I have told before that Task-File is like that:

  • Register 0: [Word] Data Register. (Read-Write).
  • Register 1: [Byte] Error Register. (Read).
  • Register 1: [Byte] Features Register. (Write).
  • Register 2: [Byte] SECCOUNT0 Register. (Read-Write).
  • Register 3: [Byte] LBA0 Register. (Read-Write).
  • Register 4: [Byte] LBA1 Register. (Read-Write).
  • Register 5: [Byte] LBA2 Register. (Read-Write).
  • Register 6: [Byte] HDDEVSEL Register. (Read-Write).
  • Register 7: [Byte] Command Register. (Write).
  • Register 7: [Byte] Status Register. (Read).

So each register between 2 to 5 should be 8-bits long. Really each of them are 16-bits long.

  • Register 2: [Bits 0-7] SECCOUNT0, [Bits 8-15] SECOUNT1
  • Register 3: [Bits 0-7] LBA0, [Bits 8-15] LBA3
  • Register 4: [Bits 0-7] LBA1, [Bits 8-15] LBA4
  • Register 5: [Bits 0-7] LBA2, [Bits 8-15] LBA5

The word [(SECCOUNT1 << 8) | SECCOUNT0] expresses the number of sectors which can be read when you access by LBA48. When you access in CHS or LBA28, SECCOUNT0 only expresses number of sectors.

  • LBA0 makes up bits 0 : 7 of the LBA address when you read in LBA28 or LBA48; it can also be the sector number of CHS.
  • LBA1 makes up bits 8 : 15 of the LBA address when you read in LBA28 or LBA48; it can also be the low byte of the cylinder number of CHS.
  • LBA2 makes up bits 16 : 23 of the LBA address when you read in LBA28 or LBA48; it can also be the high byte of the cylinder number of CHS.
  • LBA3 makes up bits 24 : 31 of the LBA48 address.
  • LBA4 makes up bits 32 : 39 of the LBA48 address.
  • LBA5 makes up bits 40 : 47 of LBA48 address.

Notice that the LBA0, 1 and 2 registers are 24 bits long in total, which is not enough for LBA28; the higher 4-bits can be written to the lower 4-bits of the HDDEVSEL register.

Also notice that if bit 6 of this register is set, we are going to use LBA, if not, we are going to use CHS. There is a mode which is called extended CHS.

Lets go into the code:

unsigned char ide_ata_access(unsigned char direction, unsigned char drive, unsigned int lba, 
                             unsigned char numsects, unsigned short selector, unsigned int edi) {

This function reads/writes sectors from ATA-Drive. If direction is 0 we are reading, else we are writing.

  • drive is the drive number which can be from 0 to 3.
  • lba is the LBA address which allows us to access disks up to 2TB.
  • numsects is the number of sectors to be read, it is a char, as reading more than 256 sector immediately may performance issues. If numsects is 0, the ATA controller will know that we want 256 sectors.
  • selector is the segment selector to read from, or write to.
  • edi is the offset in that segment. (the memory address for the data buffer)
   unsigned char lba_mode /* 0: CHS, 1:LBA28, 2: LBA48 */, dma /* 0: No DMA, 1: DMA */, cmd;
   unsigned char lba_io[6];
   unsigned int  channel      = ide_devices[drive].Channel; // Read the Channel.
   unsigned int  slavebit      = ide_devices[drive].Drive; // Read the Drive [Master/Slave]
   unsigned int  bus = channels[channel].Base; // Bus Base, like 0x1F0 which is also data port.
   unsigned int  words      = 256; // Almost every ATA drive has a sector-size of 512-byte.
   unsigned short cyl, i;
   unsigned char head, sect, err;

We don't need IRQs, so we should disable it to prevent problems from happening. We said before that if bit 1 of the Control Register (which is called nIEN bit), is set, no IRQs will be invoked from any drives on this channel, either master or slave.

ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN = (ide_irq_invoked = 0x0) + 0x02);

Now lets read the parameters:

   // (I) Select one from LBA28, LBA48 or CHS;
   if (lba >= 0x10000000) { // Sure Drive should support LBA in this case, or you are
                            // giving a wrong LBA.
      // LBA48:
      lba_mode  = 2;
      lba_io[0] = (lba & 0x000000FF) >> 0;
      lba_io[1] = (lba & 0x0000FF00) >> 8;
      lba_io[2] = (lba & 0x00FF0000) >> 16;
      lba_io[3] = (lba & 0xFF000000) >> 24;
      lba_io[4] = 0; // LBA28 is integer, so 32-bits are enough to access 2TB.
      lba_io[5] = 0; // LBA28 is integer, so 32-bits are enough to access 2TB.
      head      = 0; // Lower 4-bits of HDDEVSEL are not used here.
   } else if (ide_devices[drive].Capabilities & 0x200)  { // Drive supports LBA?
      // LBA28:
      lba_mode  = 1;
      lba_io[0] = (lba & 0x00000FF) >> 0;
      lba_io[1] = (lba & 0x000FF00) >> 8;
      lba_io[2] = (lba & 0x0FF0000) >> 16;
      lba_io[3] = 0; // These Registers are not used here.
      lba_io[4] = 0; // These Registers are not used here.
      lba_io[5] = 0; // These Registers are not used here.
      head      = (lba & 0xF000000) >> 24;
   } else {
      // CHS:
      lba_mode  = 0;
      sect      = (lba % 63) + 1;
      cyl       = (lba + 1  - sect) / (16 * 63);
      lba_io[0] = sect;
      lba_io[1] = (cyl >> 0) & 0xFF;
      lba_io[2] = (cyl >> 8) & 0xFF;
      lba_io[3] = 0;
      lba_io[4] = 0;
      lba_io[5] = 0;
      head      = (lba + 1  - sect) % (16 * 63) / (63); // Head number is written to HDDEVSEL lower 4-bits.
   }

Now we are going to choose the way of reading the buffer [PIO or DMA]:

   // (II) See if drive supports DMA or not;
   dma = 0; // We don't support DMA

Lets poll the Status port while the channel is busy:

   // (III) Wait if the drive is busy;
   while (ide_read(channel, ATA_REG_STATUS) & ATA_SR_BSY){   
   
   } // Wait if busy.

The HDDDEVSEL register now looks like this:

  • Bits 0 : 3: Head Number for CHS.
  • Bit 4: Slave Bit. (0: Selecting Master Drive, 1: Selecting Slave Drive).
  • Bit 5: Obsolete and isn't used, but should be set.
  • Bit 6: LBA (0: CHS, 1: LBA).
  • Bit 7: Obsolete and isn't used, but should be set.

Lets write all these information to the register, while the obsolete bits are set (0xA0):

   // (IV) Select Drive from the controller;
   if (lba_mode == 0)
      ide_write(channel, ATA_REG_HDDEVSEL, 0xA0 | (slavebit << 4) | head); // Drive & CHS.
   else
      ide_write(channel, ATA_REG_HDDEVSEL, 0xE0 | (slavebit << 4) | head); // Drive & LBA

Let's write the parameters to registers:

   // (V) Write Parameters;
   if (lba_mode == 2) {
      ide_write(channel, ATA_REG_SECCOUNT1,   0);
      ide_write(channel, ATA_REG_LBA3,   lba_io[3]);
      ide_write(channel, ATA_REG_LBA4,   lba_io[4]);
      ide_write(channel, ATA_REG_LBA5,   lba_io[5]);
   }
   ide_write(channel, ATA_REG_SECCOUNT0,   numsects);
   ide_write(channel, ATA_REG_LBA0,   lba_io[0]);
   ide_write(channel, ATA_REG_LBA1,   lba_io[1]);
   ide_write(channel, ATA_REG_LBA2,   lba_io[2]);

If you are using LBA48 and want to write to the LBA0 and LBA3 registers, you should write LBA3 to Register 3, then write LBA0 to Register 3. ide_write function makes it quite simple, refer to the function and you will fully understand the code.

Now, we have a great set of commands described in ATA/ATAPI-8 Specification, we should choose the suitable command to execute:

   // (VI) Select the command and send it;
   // Routine that is followed:
   // If ( DMA & LBA48)   DO_DMA_EXT;
   // If ( DMA & LBA28)   DO_DMA_LBA;
   // If ( DMA & LBA28)   DO_DMA_CHS;
   // If (!DMA & LBA48)   DO_PIO_EXT;
   // If (!DMA & LBA28)   DO_PIO_LBA;
   // If (!DMA & !LBA#)   DO_PIO_CHS;

There isn't a command for doing CHS with DMA.

   if (lba_mode == 0 && dma == 0 && direction == 0) cmd = ATA_CMD_READ_PIO;
   if (lba_mode == 1 && dma == 0 && direction == 0) cmd = ATA_CMD_READ_PIO;   
   if (lba_mode == 2 && dma == 0 && direction == 0) cmd = ATA_CMD_READ_PIO_EXT;   
   if (lba_mode == 0 && dma == 1 && direction == 0) cmd = ATA_CMD_READ_DMA;
   if (lba_mode == 1 && dma == 1 && direction == 0) cmd = ATA_CMD_READ_DMA;
   if (lba_mode == 2 && dma == 1 && direction == 0) cmd = ATA_CMD_READ_DMA_EXT;
   if (lba_mode == 0 && dma == 0 && direction == 1) cmd = ATA_CMD_WRITE_PIO;
   if (lba_mode == 1 && dma == 0 && direction == 1) cmd = ATA_CMD_WRITE_PIO;
   if (lba_mode == 2 && dma == 0 && direction == 1) cmd = ATA_CMD_WRITE_PIO_EXT;
   if (lba_mode == 0 && dma == 1 && direction == 1) cmd = ATA_CMD_WRITE_DMA;
   if (lba_mode == 1 && dma == 1 && direction == 1) cmd = ATA_CMD_WRITE_DMA;
   if (lba_mode == 2 && dma == 1 && direction == 1) cmd = ATA_CMD_WRITE_DMA_EXT;
   ide_write(channel, ATA_REG_COMMAND, cmd);               // Send the Command.

This ATA_CMD_READ_PIO command is used for reading in LBA28 or CHS, and the IDE controller refers to bit 6 of the HDDEVSEL register to find out the mode of reading (LBA or CHS).

After sending the command, we should poll, then we read/write a sector, then we should poll, then we read/write a sector, until we read/write all sectors needed, if an error has happened, the function will return a specific error code.

Notice that after writing, we should execute the CACHE FLUSH command, and we should poll after it, but without checking for errors.

   if (dma)
      if (direction == 0);
         // DMA Read.
      else;
         // DMA Write.
   else
      if (direction == 0)
         // PIO Read.
      for (i = 0; i < numsects; i++) {
         if (err = ide_polling(channel, 1))
            return err; // Polling, set error and exit if there is.
         asm("pushw %es");
         asm("mov %%ax, %%es" : : "a"(selector));
         asm("rep insw" : : "c"(words), "d"(bus), "D"(edi)); // Receive Data.
         asm("popw %es");
         edi += (words*2);
      } else {
      // PIO Write.
         for (i = 0; i < numsects; i++) {
            ide_polling(channel, 0); // Polling.
            asm("pushw %ds");
            asm("mov %%ax, %%ds"::"a"(selector));
            asm("rep outsw"::"c"(words), "d"(bus), "S"(edi)); // Send Data
            asm("popw %ds");
            edi += (words*2);
         }
         ide_write(channel, ATA_REG_COMMAND, (char []) {   ATA_CMD_CACHE_FLUSH,
                        ATA_CMD_CACHE_FLUSH,
                        ATA_CMD_CACHE_FLUSH_EXT}[lba_mode]);
         ide_polling(channel, 0); // Polling.
      }

   return 0; // Easy, isn't it?
}

Reading from an ATAPI Drive

Let's move to an easier part - reading from an ATAPI drive. I will not make the function that writes to an ATAPI drive, because writing to it is very complex and is outside of the scope of this tutorial.

An ATAPI drive is different from an ATA drive, as it uses the SCSI command set instead of the ATA command set. Parameters are sent as packets, therefore it's called the ATA Packet Interface [ATAPI].

Notice also that ATAPI drives always use IRQs and you can't disable them. We should create a function that waits for an IRQ:

void ide_wait_irq() {
   while (!ide_irq_invoked)
      ;
   ide_irq_invoked = 0;
}

When an IRQ happens, the following function should be executed by ISR:

void ide_irq() {
   ide_irq_invoked = 1;
}

ide_wait_irq will go into a while loop, which waits for the variable ide_irq_invoked to be set, then clears it.

unsigned char ide_atapi_read(unsigned char drive, unsigned int lba, unsigned char numsects,
          unsigned short selector, unsigned int edi) {
  • drive is the drive number, which is from 0 to 3.
  • lba is the LBA address.
  • numsects is the number of sectors. It should always be 1, and if you want to read more than one sector, re-execute this function with th updated LBA address.
  • selector is the Segment Selector.
  • edi is the offset in the selector.

Let's read the parameters of the drive:

   unsigned int   channel  = ide_devices[drive].Channel;
   unsigned int   slavebit = ide_devices[drive].Drive;
   unsigned int   bus      = channels[channel].Base;
   unsigned int   words    = 1024; // Sector Size. ATAPI drives have a sector size of 2048 bytes.
   unsigned char  err;
   int i;

We need IRQs:

   // Enable IRQs:
   ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN = ide_irq_invoked = 0x0);

Let's setup the SCSI Packet, which is 6 words (12 bytes) long:

   // (I): Setup SCSI Packet:
   // ------------------------------------------------------------------
   atapi_packet[ 0] = ATAPI_CMD_READ;
   atapi_packet[ 1] = 0x0;
   atapi_packet[ 2] = (lba >> 24) & 0xFF;
   atapi_packet[ 3] = (lba >> 16) & 0xFF;
   atapi_packet[ 4] = (lba >> 8) & 0xFF;
   atapi_packet[ 5] = (lba >> 0) & 0xFF;
   atapi_packet[ 6] = 0x0;
   atapi_packet[ 7] = 0x0;
   atapi_packet[ 8] = 0x0;
   atapi_packet[ 9] = numsects;
   atapi_packet[10] = 0x0;
   atapi_packet[11] = 0x0;

Now we should select the drive:

   // (II): Select the drive:
   // ------------------------------------------------------------------
   ide_write(channel, ATA_REG_HDDEVSEL, slavebit << 4);

400 nanoseconds delay after this select is a good idea:

   // (III): Delay 400 nanoseconds for select to complete:
   // ------------------------------------------------------------------
   for(int i = 0; i < 4; i++)
       ide_read(channel, ATA_REG_ALTSTATUS); // Reading the Alternate Status port wastes 100ns.
   // (IV): Inform the Controller that we use PIO mode:
   // ------------------------------------------------------------------
   ide_write(channel, ATA_REG_FEATURES, 0);         // PIO mode.

Tell the controller the size of the buffer

   // (V): Tell the Controller the size of buffer:
   // ------------------------------------------------------------------
   ide_write(channel, ATA_REG_LBA1, (words * 2) & 0xFF);   // Lower Byte of Sector Size.
   ide_write(channel, ATA_REG_LBA2, (words * 2) >> 8);   // Upper Byte of Sector Size.

Now that we want to send the packet, we should first send the command "Packet":

   // (VI): Send the Packet Command:
   // ------------------------------------------------------------------
   ide_write(channel, ATA_REG_COMMAND, ATA_CMD_PACKET);      // Send the Command.

   // (VII): Waiting for the driver to finish or return an error code:
   // ------------------------------------------------------------------
   if (err = ide_polling(channel, 1)) return err;         // Polling and return if error.

   // (VIII): Sending the packet data:
   // ------------------------------------------------------------------
   asm("rep   outsw" : : "c"(6), "d"(bus), "S"(atapi_packet));   // Send Packet Data

Here we cannot poll. We should wait for an IRQ, then read the sectors. These two operations should be repeated for each sector.

   // (IX): Receiving Data:
   // ------------------------------------------------------------------
   for (i = 0; i < numsects; i++) {
      ide_wait_irq();                  // Wait for an IRQ.
      if (err = ide_polling(channel, 1))
         return err;      // Polling and return if error.
      asm("pushw %es");
      asm("mov %%ax, %%es"::"a"(selector));
      asm("rep insw"::"c"(words), "d"(bus), "D"(edi));// Receive Data.
      asm("popw %es");
      edi += (words * 2);
   }

Now we should wait for an IRQ and poll until the Busy and DRQ bits are clear:

   // (X): Waiting for an IRQ:
   // ------------------------------------------------------------------
   ide_wait_irq();

   // (XI): Waiting for BSY & DRQ to clear:
   // ------------------------------------------------------------------
   while (ide_read(channel, ATA_REG_STATUS) & (ATA_SR_BSY | ATA_SR_DRQ))
      ;

   return 0; // Easy, ... Isn't it?
}

Reading from an ATA/ATAPI Drive

void ide_read_sectors(unsigned char drive, unsigned char numsects, unsigned int lba,
                      unsigned short es, unsigned int edi) {

   // 1: Check if the drive presents:
   // ==================================
   if (drive > 3 || ide_devices[drive].Reserved == 0) package[0] = 0x1;      // Drive Not Found!

   // 2: Check if inputs are valid:
   // ==================================
   else if (((lba + numsects) > ide_devices[drive].Size) && (ide_devices[drive].Type == IDE_ATA))
      package[0] = 0x2;                     // Seeking to invalid position.

   // 3: Read in PIO Mode through Polling & IRQs:
   // ============================================
   else {
      unsigned char err;
      if (ide_devices[drive].Type == IDE_ATA)
         err = ide_ata_access(ATA_READ, drive, lba, numsects, es, edi);
      else if (ide_devices[drive].Type == IDE_ATAPI)
         for (i = 0; i < numsects; i++)
            err = ide_atapi_read(drive, lba + i, 1, es, edi + (i*2048));
      package[0] = ide_print_error(drive, err);
   }
}
// package[0] is an entry of an array. It contains the Error Code.

Writing to an ATA drive

void ide_write_sectors(unsigned char drive, unsigned char numsects, unsigned int lba,
                       unsigned short es, unsigned int edi) {

   // 1: Check if the drive presents:
   // ==================================
   if (drive > 3 || ide_devices[drive].Reserved == 0)
      package[0] = 0x1;      // Drive Not Found!
   // 2: Check if inputs are valid:
   // ==================================
   else if (((lba + numsects) > ide_devices[drive].Size) && (ide_devices[drive].Type == IDE_ATA))
      package[0] = 0x2;                     // Seeking to invalid position.
   // 3: Read in PIO Mode through Polling & IRQs:
   // ============================================
   else {
      unsigned char err;
      if (ide_devices[drive].Type == IDE_ATA)
         err = ide_ata_access(ATA_WRITE, drive, lba, numsects, es, edi);
      else if (ide_devices[drive].Type == IDE_ATAPI)
         err = 4; // Write-Protected.
      package[0] = ide_print_error(drive, err);
   }
}

Ejecting an ATAPI Drive

void ide_atapi_eject(unsigned char drive) {
   unsigned int   channel      = ide_devices[drive].Channel;
   unsigned int   slavebit      = ide_devices[drive].Drive;
   unsigned int   bus      = channels[channel].Base;
   unsigned int   words      = 2048 / 2;               // Sector Size in Words.
   unsigned char  err = 0;
   ide_irq_invoked = 0;

   // 1: Check if the drive presents:
   // ==================================
   if (drive > 3 || ide_devices[drive].Reserved == 0)
      package[0] = 0x1;      // Drive Not Found!
   // 2: Check if drive isn't ATAPI:
   // ==================================
   else if (ide_devices[drive].Type == IDE_ATA)
      package[0] = 20;         // Command Aborted.
   // 3: Eject ATAPI Driver:
   // ============================================
   else {
      // Enable IRQs:
      ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN = ide_irq_invoked = 0x0);

      // (I): Setup SCSI Packet:
      // ------------------------------------------------------------------
      atapi_packet[ 0] = ATAPI_CMD_EJECT;
      atapi_packet[ 1] = 0x00;
      atapi_packet[ 2] = 0x00;
      atapi_packet[ 3] = 0x00;
      atapi_packet[ 4] = 0x02;
      atapi_packet[ 5] = 0x00;
      atapi_packet[ 6] = 0x00;
      atapi_packet[ 7] = 0x00;
      atapi_packet[ 8] = 0x00;
      atapi_packet[ 9] = 0x00;
      atapi_packet[10] = 0x00;
      atapi_packet[11] = 0x00;

      // (II): Select the Drive:
      // ------------------------------------------------------------------
      ide_write(channel, ATA_REG_HDDEVSEL, slavebit << 4);

      // (III): Delay 400 nanosecond for select to complete:
      // ------------------------------------------------------------------
      for(int i = 0; i < 4; i++)
         ide_read(channel, ATA_REG_ALTSTATUS); // Reading Alternate Status Port wastes 100ns.

      // (IV): Send the Packet Command:
      // ------------------------------------------------------------------
      ide_write(channel, ATA_REG_COMMAND, ATA_CMD_PACKET);      // Send the Command.

      // (V): Waiting for the driver to finish or invoke an error:
      // ------------------------------------------------------------------
      err = ide_polling(channel, 1);            // Polling and stop if error.

      // (VI): Sending the packet data:
      // ------------------------------------------------------------------
      else {
         asm("rep   outsw"::"c"(6), "d"(bus), "S"(atapi_packet));// Send Packet Data
         ide_wait_irq();                  // Wait for an IRQ.
         err = ide_polling(channel, 1);            // Polling and get error code.
         if (err == 3) err = 0; // DRQ is not needed here.
      }
      package[0] = ide_print_error(drive, err); // Return;
   }
}

When this method is invoked, the optical device on the given channel is ejected.

See Also

Wiki Pages

Threads

External Links