AHCI: Difference between revisions

5,615 bytes added ,  26 days ago
m
Bot: Replace deprecated source tag with syntaxhighlight
[unchecked revision][unchecked revision]
(Added some extra error handling)
m (Bot: Replace deprecated source tag with syntaxhighlight)
 
(29 intermediate revisions by 13 users not shown)
Line 1:
The specification:
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/serial-ata-ahci-spec-rev1-3-1.pdf
 
== Introduction ==
 
AHCI (Advance Host Controller Interface) is developed by Intel to facilitate handling [[SATA]] devices. The AHCI specification emphasizes that an AHCI controller (referred to as host bus adapter, or HBA) is designed to be a data movement engine between system memory and SATA devices. It encapsulates SATA devices and provides a standard [[PCI]] interface to the host. System designers can easily access SATA drives using system memory and memory mapped registers, without the need for manipulating the annoying task files as IDE do.
 
An AHCI controller may support up to 32 ports which can attach different SATA devices such as disk drives, port multipliers, or an enclosure management bridge. AHCI supports all native SATA features such as command queueing, hot plugging, power management, etc. To a software developer, an AHCI controller is just a PCI device with bus master capability.
 
AHCI is a new standard compared to [[IDE]], which has been around for twenty years. There exists little documentation about its programming tips and tricks. Possibly the only available resource is the Intel AHCI specification (see [[#External Links|External Links]]) and some open source operating systems such as Linux. This article shows the minimal steps an OS (not BIOS) should do to put AHCI controller into a workable state, how to identify drives attached, and how to read physical sectors from a SATA disk. To keep concise, many technical details and deep explanations of some data structures have been omitted.
 
It should be noted that IDE also supports SATA devices and there are still debates about which one, IDE or AHCI, is better. Some tests even show that a SATA disk acts better in IDE mode than AHCI mode. But the common idea is that AHCI performs better and will be the standard PC to SATA interface, though some driver software should be enhanced to fully cultivate AHCI capability.
Line 15 ⟶ 18:
There are at least two SATA standards maintained respectively by [http://www.t13.org T13] and [http://www.sata-io.org SATA-IO]. The SATA-IO focuses on serial ATA and T13 encompasses traditional parallel ATA specifications as well.
 
While the hardware specifications for IDE and SATA (and even between different devices implementing them) differ greatly, the API and ABI are very similar. To a software developer, the biggest difference between SATA and parallel ATA is that SATA uses FIS (Frame Information Structure) packet to transport data between host and device, though at hardware level they differ much. An FIS can be viewed as a data set of traditional task files, or an encapsulation of ATA commands. SATA uses the same command set as parallel ATA.
 
'''1) FIS types'''
Line 21 ⟶ 24:
Following code defines different kinds of FIS specified in Serial ATA Revision 3.0.
 
<sourcesyntaxhighlight lang="c">
typedef enum
{
Line 33 ⟶ 36:
FIS_TYPE_DEV_BITS = 0xA1, // Set device bits FIS - device to host
} FIS_TYPE;
</syntaxhighlight>
</source>
 
'''2) Register FIS – Host to Device'''
Line 39 ⟶ 42:
A host to device register FIS is used by the host to send command or control to a device. As illustrated in the following data structure, it contains the IDE registers such as command, LBA, device, feature, count and control. An ATA command is constructed in this structure and issued to the device. All reserved fields in an FIS should be cleared to zero.
 
<sourcesyntaxhighlight lang="c">
typedef struct tagFIS_REG_H2D
{
// DWORD 0
BYTE uint8_t fis_type; // FIS_TYPE_REG_H2D
 
BYTE uint8_t pmport:4; // Port multiplier
BYTE uint8_t rsv0:3; // Reserved
BYTE uint8_t c:1; // 1: Command, 0: Control
 
BYTE uint8_t command; // Command register
BYTE uint8_t featurel; // Feature register, 7:0
// DWORD 1
BYTE uint8_t lba0; // LBA low register, 7:0
BYTE uint8_t lba1; // LBA mid register, 15:8
BYTE uint8_t lba2; // LBA high register, 23:16
BYTE uint8_t device; // Device register
 
// DWORD 2
BYTE uint8_t lba3; // LBA register, 31:24
BYTE uint8_t lba4; // LBA register, 39:32
BYTE uint8_t lba5; // LBA register, 47:40
BYTE uint8_t featureh; // Feature register, 15:8
 
// DWORD 3
BYTE uint8_t countl; // Count register, 7:0
BYTE uint8_t counth; // Count register, 15:8
BYTE uint8_t icc; // Isochronous command completion
BYTE uint8_t control; // Control register
 
// DWORD 4
BYTE uint8_t rsv1[4]; // Reserved
} FIS_REG_H2D;
</syntaxhighlight>
</source>
 
'''3) Register FIS – Device to Host'''
Line 79 ⟶ 82:
A device to host register FIS is used by the device to notify the host that some ATA register has changed. It contains the updated task files such as status, error and other registers.
 
<sourcesyntaxhighlight lang="c">
typedef struct tagFIS_REG_D2H
{
// DWORD 0
BYTE uint8_t fis_type; // FIS_TYPE_REG_D2H
 
BYTE uint8_t pmport:4; // Port multiplier
BYTE uint8_t rsv0:2; // Reserved
BYTE uint8_t i:1; // Interrupt bit
BYTE uint8_t rsv1:1; // Reserved
 
BYTE uint8_t status; // Status register
BYTE uint8_t error; // Error register
// DWORD 1
BYTE uint8_t lba0; // LBA low register, 7:0
BYTE uint8_t lba1; // LBA mid register, 15:8
BYTE uint8_t lba2; // LBA high register, 23:16
BYTE uint8_t device; // Device register
 
// DWORD 2
BYTE uint8_t lba3; // LBA register, 31:24
BYTE uint8_t lba4; // LBA register, 39:32
BYTE uint8_t lba5; // LBA register, 47:40
BYTE uint8_t rsv2; // Reserved
 
// DWORD 3
BYTE uint8_t countl; // Count register, 7:0
BYTE uint8_t counth; // Count register, 15:8
BYTE uint8_t rsv3[2]; // Reserved
 
// DWORD 4
BYTE uint8_t rsv4[4]; // Reserved
} FIS_REG_D2H;
</syntaxhighlight>
</source>
 
'''4) Data FIS – Bidirectional'''
Line 119 ⟶ 122:
This FIS is used by the host or device to send data payload. The data size can be varied.
 
<sourcesyntaxhighlight lang="c">
typedef struct tagFIS_DATA
{
// DWORD 0
BYTE uint8_t fis_type; // FIS_TYPE_DATA
 
BYTE uint8_t pmport:4; // Port multiplier
BYTE uint8_t rsv0:4; // Reserved
 
BYTE uint8_t rsv1[2]; // Reserved
 
// DWORD 1 ~ N
DWORD uint32_t data[1]; // Payload
} FIS_DATA;
</syntaxhighlight>
</source>
 
'''5) PIO Setup – Device to Host'''
Line 139 ⟶ 142:
This FIS is used by the device to tell the host that it’s about to send or ready to receive a PIO data payload.
 
<sourcesyntaxhighlight lang="c">
typedef struct tagFIS_PIO_SETUP
{
// DWORD 0
BYTE uint8_t fis_type; // FIS_TYPE_PIO_SETUP
 
BYTE uint8_t pmport:4; // Port multiplier
BYTE uint8_t rsv0:1; // Reserved
BYTE uint8_t d:1; // Data transfer direction, 1 - device to host
BYTE uint8_t i:1; // Interrupt bit
BYTE uint8_t rsv1:1;
 
BYTE uint8_t status; // Status register
BYTE uint8_t error; // Error register
 
// DWORD 1
BYTE uint8_t lba0; // LBA low register, 7:0
BYTE uint8_t lba1; // LBA mid register, 15:8
BYTE uint8_t lba2; // LBA high register, 23:16
BYTE uint8_t device; // Device register
 
// DWORD 2
BYTE uint8_t lba3; // LBA register, 31:24
BYTE uint8_t lba4; // LBA register, 39:32
BYTE uint8_t lba5; // LBA register, 47:40
BYTE uint8_t rsv2; // Reserved
 
// DWORD 3
BYTE uint8_t countl; // Count register, 7:0
BYTE uint8_t counth; // Count register, 15:8
BYTE uint8_t rsv3; // Reserved
BYTE uint8_t e_status; // New value of status register
 
// DWORD 4
WORD uint16_t tc; // Transfer count
BYTE uint8_t rsv4[2]; // Reserved
} FIS_PIO_SETUP;
</syntaxhighlight>
</source>
 
'''6) ExampleDMA Setup – Device to Host'''
 
<syntaxhighlight lang="c">
typedef struct tagFIS_DMA_SETUP
{
// DWORD 0
uint8_t fis_type; // FIS_TYPE_DMA_SETUP
 
uint8_t pmport:4; // Port multiplier
uint8_t rsv0:1; // Reserved
uint8_t d:1; // Data transfer direction, 1 - device to host
uint8_t i:1; // Interrupt bit
uint8_t a:1; // Auto-activate. Specifies if DMA Activate FIS is needed
 
uint8_t rsved[2]; // Reserved
 
//DWORD 1&2
 
uint64_t DMAbufferID; // DMA Buffer Identifier. Used to Identify DMA buffer in host memory.
// SATA Spec says host specific and not in Spec. Trying AHCI spec might work.
 
//DWORD 3
uint32_t rsvd; //More reserved
 
//DWORD 4
uint32_t DMAbufOffset; //Byte offset into buffer. First 2 bits must be 0
 
//DWORD 5
uint32_t TransferCount; //Number of bytes to transfer. Bit 0 must be 0
 
//DWORD 6
uint32_t resvd; //Reserved
} FIS_DMA_SETUP;
</syntaxhighlight>
 
'''7) Example'''
 
This example illustrates the steps to read the Identify data from a device. Error detection and recovery is ignored.
Line 184 ⟶ 223:
To issue an ATA Identify command to the device, the FIS is constructed at follows.
 
<sourcesyntaxhighlight lang="c">
FIS_REG_H2D fis;
memset(&fis, 0, sizeof(FIS_REG_H2D));
fis->.fis_type = FIS_TYPE_REG_H2D;
fis->.command = ATA_CMD_IDENTIFY; // 0xEC
fis->.device = 0; // Master device
fis->.c = 1; // Write command register
</syntaxhighlight>
</source>
 
After the device receives this FIS and successfully read the 256 words data into its internal buffer, it sends a PIO Setup FIS – Device to Host to tell the host that it’s ready to transfer data and the data size (FIS_PIO_SETUP.tc).
Line 201 ⟶ 240:
== Find an AHCI controller ==
 
An AHCI controller can be found by enumerating the PCI bus. It has a class id 0x01 (mass storage device) and normally a subclass id 0x06 (serial ATA, but can be IDE Interface 0x01). The vendor id and device id should also be checked to ensure it’s really an AHCI controller.
 
=== Determining what mode the controller is in ===
As you may be aware, a SATA controller can either be in IDE emulation mode or in AHCI mode. The problem that enters here is simple: <br />
'''How to find what mode the controller is in'''. The documentation is really obscure on this. Perhaps the best way is to initialize a SATA controller as both IDE and AHCI. In this way, as long as you are careful about non-existent ports, you cannot go wrong.
 
One possible way of doing this is by checking the bit 31 of GHC register. It's labeled as AHCI Enable.
 
== AHCI Registers and Memory Structures ==
Line 213 ⟶ 258:
[[Image:HBA_registers.jpg‎]]
 
<sourcesyntaxhighlight lang="c">
typedef volatile struct tagHBA_MEM
{
// 0x00 - 0x2B, Generic Host Control
DWORD uint32_t cap; // 0x00, Host capability
DWORD uint32_t ghc; // 0x04, Global host control
DWORD uint32_t is; // 0x08, Interrupt status
DWORD uint32_t pi; // 0x0C, Port implemented
DWORD uint32_t vs; // 0x10, Version
DWORD uint32_t ccc_ctl; // 0x14, Command completion coalescing control
DWORD uint32_t ccc_pts; // 0x18, Command completion coalescing ports
DWORD uint32_t em_loc; // 0x1C, Enclosure management location
DWORD uint32_t em_ctl; // 0x20, Enclosure management control
DWORD uint32_t cap2; // 0x24, Host capabilities extended
DWORD uint32_t bohc; // 0x28, BIOS/OS handoff control and status
 
// 0x2C - 0x9F, Reserved
BYTE uint8_t rsv[0xA0-0x2C];
 
// 0xA0 - 0xFF, Vendor specific registers
BYTE uint8_t vendor[0x100-0xA0];
 
// 0x100 - 0x10FF, Port control registers
Line 241 ⟶ 286:
typedef volatile struct tagHBA_PORT
{
DWORD uint32_t clb; // 0x00, command list base address, 1K-byte aligned
DWORD uint32_t clbu; // 0x04, command list base address upper 32 bits
DWORD uint32_t fb; // 0x08, FIS base address, 256-byte aligned
DWORD uint32_t fbu; // 0x0C, FIS base address upper 32 bits
DWORD uint32_t is; // 0x10, interrupt status
DWORD uint32_t ie; // 0x14, interrupt enable
DWORD uint32_t cmd; // 0x18, command and status
DWORD uint32_t rsv0; // 0x1C, Reserved
DWORD uint32_t tfd; // 0x20, task file data
DWORD uint32_t sig; // 0x24, signature
DWORD uint32_t ssts; // 0x28, SATA status (SCR0:SStatus)
DWORD uint32_t sctl; // 0x2C, SATA control (SCR2:SControl)
DWORD uint32_t serr; // 0x30, SATA error (SCR1:SError)
DWORD uint32_t sact; // 0x34, SATA active (SCR3:SActive)
DWORD uint32_t ci; // 0x38, command issue
DWORD uint32_t sntf; // 0x3C, SATA notification (SCR4:SNotification)
DWORD uint32_t fbs; // 0x40, FIS-based switch control
DWORD uint32_t rsv1[11]; // 0x44 ~ 0x6F, Reserved
DWORD uint32_t vendor[4]; // 0x70 ~ 0x7F, vendor specific
} HBA_PORT;
</syntaxhighlight>
</source>
 
This memory area should be configured as uncacheable as they are memory mapped hardware registers, not normal prefetchable RAM. For the same reason, the data structures are declared as "volatile" to prevent the compiler from over optimizing the code.
Line 277 ⟶ 322:
Data FIS – Device to Host is not copied to this structure. Data payload is sent and received through PRDT (Physical Region Descriptor Table) in Command List, as will be introduced later.
 
<sourcesyntaxhighlight lang="c">
typedef volatile struct tagHBA_FIS
{
// 0x00
FIS_DMA_SETUP dsfis; // DMA Setup FIS
BYTE uint8_t pad0[4];
 
// 0x20
FIS_PIO_SETUP psfis; // PIO Setup FIS
BYTE uint8_t pad1[12];
 
// 0x40
FIS_REG_D2H rfis; // Register – Device to Host FIS
BYTE uint8_t pad2[4];
 
// 0x58
Line 296 ⟶ 341:
// 0x60
BYTE uint8_t ufis[64];
 
// 0xA0
BYTE uint8_t rsv[0x100-0xA0];
} HBA_FIS;
</syntaxhighlight>
</source>
 
'''4) Command List'''
Line 309 ⟶ 354:
To send a command, the host constructs a command header, and set the according bit in the Port Command Issue register (HBA_PORT.ci). The AHCI controller will automatically send the command to the device and wait for response. If there are some errors, error bits in the Port Interrupt register (HBA_PORT.is) will be set and additional information can be retrieved from the Port Task File register (HBA_PORT.tfd), SStatus register (HBA_PORT.ssts) and SError register (HBA_PORT.serr). If it succeeds, the Command Issue register bit will be cleared and the received data payload, if any, will be copied from the device to the host memory by the AHCI controller.
 
How many slots a Command List holds can be got from the Host capability register (HBA_MEM.cap). It must be within 1 and 32. SATA supports queued commands to increase throughput. Unlike traditional parallel ATA drive; ana SATA onedrive can process a new command when an old one is still running. With AHCI, a host can send up to 32 commands to device simultaneously.
 
[[Image:Command_list.jpg‎]]
 
<sourcesyntaxhighlight lang="c">
typedef struct tagHBA_CMD_HEADER
{
// DW0
BYTE uint8_t cfl:5; // Command FIS length in DWORDS, 2 ~ 16
BYTE uint8_t a:1; // ATAPI
BYTE uint8_t w:1; // Write, 1: H2D, 0: D2H
BYTE uint8_t p:1; // Prefetchable
 
BYTE uint8_t r:1; // Reset
BYTE uint8_t b:1; // BIST
BYTE uint8_t c:1; // Clear busy upon R_OK
BYTE uint8_t rsv0:1; // Reserved
BYTE uint8_t pmp:4; // Port multiplier port
 
WORD uint16_t prdtl; // Physical region descriptor table length in entries
 
// DW1
volatile
DWORD uint32_t prdbc; // Physical region descriptor byte count transferred
 
// DW2, 3
DWORD uint32_t ctba; // Command table descriptor base address
DWORD uint32_t ctbau; // Command table descriptor base address upper 32 bits
 
// DW4 - 7
DWORD uint32_t rsv1[4]; // Reserved
} HBA_CMD_HEADER;
</syntaxhighlight>
</source>
 
'''5) Command Table and Physical Region Descriptor Table'''
Line 353 ⟶ 398:
[[Image:Command_table.jpg‎]]
 
<sourcesyntaxhighlight lang="c">
typedef struct tagHBA_CMD_TBL
{
// 0x00
BYTE uint8_t cfis[64]; // Command FIS
 
// 0x40
BYTE uint8_t acmd[16]; // ATAPI command, 12 or 16 bytes
 
// 0x50
BYTE uint8_t rsv[48]; // Reserved
 
// 0x80
Line 371 ⟶ 416:
typedef struct tagHBA_PRDT_ENTRY
{
DWORD uint32_t dba; // Data base address
DWORD uint32_t dbau; // Data base address upper 32 bits
DWORD uint32_t rsv0; // Reserved
 
// DW3
DWORD uint32_t dbc:22; // Byte count, 4M max
DWORD uint32_t rsv1:9; // Reserved
DWORD uint32_t i:1; // Interrupt on completion
} HBA_PRDT_ENTRY;
</syntaxhighlight>
</source>
 
== Detect attached SATA devices ==
 
'''1) Which port ishas a device attached'''
 
As specified in the AHCI specification, firmware (BIOS) should initialize the AHCI controller into a minimal workable state. OS usually needn’t reinitialize it from the bottom. Much information is already there when the OS boots.
 
The Port Implemented register (HBA_MEM.pi) is a 32 bit value and each bit represents a port. If the bit is set in this register, then the accordingcorresponding port hasis present (note: this does not necessarily mean a device is attached, otherwiseto the port). A device is attached to a port if the value of the port's HBA_PxSSTS.det field is free0x3.
 
'''2) What kind of device is attached'''
Line 394 ⟶ 439:
There are four kinds of SATA devices, and their signatures are defined as below. The Port Signature register (HBA_PORT.sig) contains the device signature, just read this register to find which kind of device is attached at the port. Some buggy AHCI controllers may not set the Signature register correctly. The most reliable way is to judge from the Identify data read back from the device.
 
<sourcesyntaxhighlight lang="c">
#define SATA_SIG_ATA 0x00000101 // SATA drive
#define SATA_SIG_ATAPI 0xEB140101 // SATAPI drive
#define SATA_SIG_SEMB 0xC33C0101 // Enclosure management bridge
#define SATA_SIG_PM 0x96690101 // Port multiplier
 
#define AHCI_DEV_NULL 0
#define AHCI_DEV_SATA 1
#define AHCI_DEV_SEMB 2
#define AHCI_DEV_PM 3
#define AHCI_DEV_SATAPI 4
 
#define HBA_PORT_IPM_ACTIVE 1
#define HBA_PORT_DET_PRESENT 3
 
void probe_port(HBA_MEM *abar)
{
// Search disk in impelementedimplemented ports
DWORDuint32_t pi = abar->pi;
int i = 0;
while (i<32)
Line 440 ⟶ 494:
static int check_type(HBA_PORT *port)
{
DWORDuint32_t ssts = port->ssts;
 
BYTEuint8_t ipm = (ssts >> 8) & 0x0F;
BYTEuint8_t det = ssts & 0x0F;
 
if (det != HBA_PORT_DET_PRESENT) // Check drive status
Line 462 ⟶ 516:
}
}
</syntaxhighlight>
</source>
 
== AHCI port memory space initialization ==
Line 470 ⟶ 524:
Before rebasing Port memory space, OS must wait for current pending commands to finish and tell HBA to stop receiving FIS from the port. Otherwise an accidently incoming FIS may be written into a partially configured memory area. This is done by checking and setting corresponding bits at the Port Command And Status register (HBA_PORT.cmd). The example subroutines stop_cmd() and start_cmd() do the job.
 
The following example assumes that the HBA has 32 ports implemented and each port contains 32 command slots, and will allocate 8 PRDTs for each command slot. (Note: unlike in the above struct definitions, this is using 8 instead of 1)
 
<sourcesyntaxhighlight lang="c">
#define AHCI_BASE 0x400000 // 4M
 
#define HBA_PxCMD_ST 0x0001
#define HBA_PxCMD_FRE 0x0010
#define HBA_PxCMD_FR 0x4000
#define HBA_PxCMD_CR 0x8000
 
void port_rebase(HBA_PORT *port, int portno)
Line 513 ⟶ 572:
{
// Wait until CR (bit15) is cleared
while (port->cmd & HBA_PxCMD_CR);
;
 
// Set FRE (bit4) and ST (bit0)
Line 525 ⟶ 585:
// Clear ST (bit0)
port->cmd &= ~HBA_PxCMD_ST;
 
// Clear FRE (bit4)
port->cmd &= ~HBA_PxCMD_FRE;
 
// Wait until FR (bit14), CR (bit15) are cleared
Line 536 ⟶ 599:
}
 
// Clear FRE (bit4)
port->cmd &= ~HBA_PxCMD_FRE;
}
</syntaxhighlight>
</source>
 
== AHCI & ATAPI ==
Line 549 ⟶ 610:
The code example shows how to read "count" sectors from sector offset "starth:startl" to "buf" with LBA48 mode from HBA "port". Every PRDT entry contains 8K bytes data payload at most.
 
<sourcesyntaxhighlight lang="c">
#define ATA_DEV_BUSY 0x80
BOOL read(HBA_PORT *port, DWORD startl, DWORD starth, DWORD count, WORD *buf)
#define ATA_DEV_DRQ 0x08
 
bool read(HBA_PORT *port, uint32_t startl, uint32_t starth, uint32_t count, uint16_t *buf)
{
port->is = (DWORDuint32_t) -1; // Clear pending interrupt bits
int spin = 0; // Spin lock timeout counter
int slot = find_cmdslot(port);
if (slot == -1)
return FALSEfalse;
 
HBA_CMD_HEADER *cmdheader = (HBA_CMD_HEADER*)port->clb;
cmdheader += slot;
cmdheader->cfl = sizeof(FIS_REG_H2D)/sizeof(DWORDuint32_t); // Command FIS size
cmdheader->w = 0; // Read from device
cmdheader->prdtl = (WORDuint16_t)((count-1)>>4) + 1; // PRDT entries count
 
HBA_CMD_TBL *cmdtbl = (HBA_CMD_TBL*)(cmdheader->ctba);
Line 571 ⟶ 635:
for (int i=0; i<cmdheader->prdtl-1; i++)
{
cmdtbl->prdt_entry[i].dba = (DWORDuint32_t) buf;
cmdtbl->prdt_entry[i].dbc = 8*1024-1; // 8K bytes (this value should always be set to 1 less than the actual value)
cmdtbl->prdt_entry[i].i = 1;
buf += 4*1024; // 4K words
Line 578 ⟶ 642:
}
// Last entry
cmdtbl->prdt_entry[i].dba = (DWORDuint32_t) buf;
cmdtbl->prdt_entry[i].dbc = (count<<9)-1; // 512 bytes per sector
cmdtbl->prdt_entry[i].i = 1;
 
Line 589 ⟶ 653:
cmdfis->command = ATA_CMD_READ_DMA_EX;
 
cmdfis->lba0 = (BYTEuint8_t)startl;
cmdfis->lba1 = (BYTEuint8_t)(startl>>8);
cmdfis->lba2 = (BYTEuint8_t)(startl>>16);
cmdfis->device = 1<<6; // LBA mode
 
cmdfis->lba3 = (BYTEuint8_t)(startl>>24);
cmdfis->lba4 = (BYTEuint8_t)starth;
cmdfis->lba5 = (BYTEuint8_t)(starth>>8);
 
cmdfis->countl = LOBYTE(count) & 0xFF;
cmdfis->counth = HIBYTE(count >> 8) & 0xFF;
 
// The below loop waits until the port is no longer busy before issuing a new command
Line 635 ⟶ 699:
}
 
return TRUEtrue;
}
 
Line 642 ⟶ 706:
{
// If not set in SACT and CI, the slot is free
DWORDuint32_t slots = (m_portport->sact | m_portport->ci);
for (int i=0; i<cmdslots; i++)
{
Line 652 ⟶ 716:
return -1;
}
</syntaxhighlight>
</source>
 
== Checklist ==
 
=== Initialisation ===
 
* Enable interrupts, DMA, and memory space access in the PCI command register
* Memory map BAR 5 register as uncacheable.
* Perform BIOS/OS handoff (if the bit in the extended capabilities is set)
* Reset controller
* Register IRQ handler, using interrupt line given in the PCI register. This interrupt line may be shared with other devices, so the usual implications of this apply.
* Enable AHCI mode and interrupts in global host control register.
* Read capabilities registers. Check 64-bit DMA is supported if you need it.
* For all the implemented ports:
** Allocate physical memory for its command list, the received FIS, and its command tables. Make sure the command tables are 128 byte aligned.
** Memory map these as uncacheable.
** Set command list and received FIS address registers (and upper registers, if supported).
** Setup command list entries to point to the corresponding command table.
** Reset the port.
** Start command list processing with the port's command register.
** Enable interrupts for the port. The D2H bit will signal completed commands.
** Read signature/status of the port to see if it connected to a drive.
** Send IDENTIFY ATA command to connected drives. Get their sector size and count.
 
=== Start read/write command ===
 
* Select an available command slot to use.
* Setup command FIS.
* Setup PRDT.
* Setup command list entry.
* Issue the command, and record separately that you have issued it.
 
=== IRQ handler ===
 
* Check global interrupt status. Write back its value. For all the ports that have a corresponding set bit...
* Check the port interrupt status. Write back its value. If zero, continue to the next port.
* If error bit set, reset port/retry commands as necessary.
* Compare issued commands register to the commands you have recorded as issuing. For any bits where a command was issued but is no longer running, this means that the command has completed.
* Once done, continue checking if any other devices sharing the IRQ also need servicing.
 
== External Links ==
Line 660 ⟶ 762:
*[http://www.t13.org ATA8-ACS, ATA8-AAM]
*[https://github.com/haiku/haiku/tree/master/src/add-ons/kernel/busses/scsi/ahci Haiku's AHCI implementation]
*[https://github.com/omarrx024/xos/blob/master/kernel/blkdev/ahci.asm xOS AHCI implementation (assembly language)]
*[https://github.com/rajesh5310/SBUnix/blob/master/sys/ahci.c SBUnix implementation]
 
[[Category:ATA]]
[[Category:Storage]]